Yu-Jen Chang, Tai-Yu Zheng, Hao-Hsiang Chuang, Chuen-De Wang, P. Chen, T. Kuo, C. Zhan, Shih-Hsien Wu, W. Lo, Yi-Chang Lu, Y. Chiou, Tzong-Lin Wu
{"title":"Low slow-wave effect and crosstalk for low-cost ABF-coated TSVs in 3-D IC interposer","authors":"Yu-Jen Chang, Tai-Yu Zheng, Hao-Hsiang Chuang, Chuen-De Wang, P. Chen, T. Kuo, C. Zhan, Shih-Hsien Wu, W. Lo, Yi-Chang Lu, Y. Chiou, Tzong-Lin Wu","doi":"10.1109/ECTC.2012.6249103","DOIUrl":null,"url":null,"abstract":"A solution for reducing the signal distortion in SiO2-coated through silicon vias (TSVs) is proposed. The mechanism can be explained by using a verified equivalent circuit model of a four-TSV system. Based on this circuit model, the phenomena that larger thickness of dielectric layer causes lower slow-wave factor (SWF), smaller insertion loss and smaller crosstalk level can be observed. With the aid of ajinomoto-build-up-film-coated (ABF-coated) TSVs, the solution can be implemented. The insertion loss is 3 dB better, the near-end crosstalk is 5 dB better, and the far-end crosstalk is 25dB better than conventional SiO2-coated TSVs at 2 GHz. Measurement results are also given. Good consistency can be seen, and can support the conclusion of the simulation results.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"18 1","pages":"1934-1938"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A solution for reducing the signal distortion in SiO2-coated through silicon vias (TSVs) is proposed. The mechanism can be explained by using a verified equivalent circuit model of a four-TSV system. Based on this circuit model, the phenomena that larger thickness of dielectric layer causes lower slow-wave factor (SWF), smaller insertion loss and smaller crosstalk level can be observed. With the aid of ajinomoto-build-up-film-coated (ABF-coated) TSVs, the solution can be implemented. The insertion loss is 3 dB better, the near-end crosstalk is 5 dB better, and the far-end crosstalk is 25dB better than conventional SiO2-coated TSVs at 2 GHz. Measurement results are also given. Good consistency can be seen, and can support the conclusion of the simulation results.