Modeling of the Adsorption Kinetics and the Convection of Surfactants in a Weld Pool

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Heat Transfer-transactions of The Asme Pub Date : 2008-09-01 DOI:10.1115/1.2946476
M. Do-Quang, G. Amberg, C. Pettersson
{"title":"Modeling of the Adsorption Kinetics and the Convection of Surfactants in a Weld Pool","authors":"M. Do-Quang, G. Amberg, C. Pettersson","doi":"10.1115/1.2946476","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive three-dimensional, time-dependent model for simulating the adsorption kinetics and the redistribution of surfactants at the surface and in the bulk of a weld pool. A physicochemical approach that was included in this paper allows the surfactant concentration at the surface and in the bulk to depart from its thermodynamical equilibrium. The Langmuir equilibrium adsorption ratio was based on the k(seg) coefficient of Sahoo (1988, \"Surface-Tension of Binary Metal-Surface-Active Solute Systems Under Conditions Relevant to Welding Metallurgy,\" Metall. Trans. B, 19B, pp. 483-491) and was finally used for calculating fluid flow and heat transfer in gas tungsten arc welding of a super duplex stainless steel, SAF 2507. In this study, the authors applied the multicomponent surfactant mass transfer model to investigate the effect of the influence of sulfur and oxygen redistribution in welding of a super duplex stainless steel.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.2946476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a comprehensive three-dimensional, time-dependent model for simulating the adsorption kinetics and the redistribution of surfactants at the surface and in the bulk of a weld pool. A physicochemical approach that was included in this paper allows the surfactant concentration at the surface and in the bulk to depart from its thermodynamical equilibrium. The Langmuir equilibrium adsorption ratio was based on the k(seg) coefficient of Sahoo (1988, "Surface-Tension of Binary Metal-Surface-Active Solute Systems Under Conditions Relevant to Welding Metallurgy," Metall. Trans. B, 19B, pp. 483-491) and was finally used for calculating fluid flow and heat transfer in gas tungsten arc welding of a super duplex stainless steel, SAF 2507. In this study, the authors applied the multicomponent surfactant mass transfer model to investigate the effect of the influence of sulfur and oxygen redistribution in welding of a super duplex stainless steel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面活性剂在熔池中的吸附动力学及对流模拟
本文提出了一个全面的三维,时间相关的模型来模拟吸附动力学和表面活性剂的重新分配在表面和焊接池的主体。本文所采用的物理化学方法允许表面活性剂浓度在表面和体中偏离其热力学平衡。Langmuir平衡吸附比基于Sahoo(1988)的k(seg)系数,“与焊接冶金有关的条件下二元金属-表面活性溶质体系的表面张力”,metal。反式。B, 19B, pp. 483-491),最后用于计算超级双相不锈钢(SAF 2507)的气体钨极弧焊中的流体流动和传热。本文采用多组分表面活性剂传质模型,研究了硫氧重分布对超级双相不锈钢焊接过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
期刊最新文献
Thermal Resistance Of Heated Superhydrophobic Channels with Streamwise Thermocapillary Stress Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux Significant Enhancement of Near-Field Radiative Heat Transfer by Misaligned Bilayer Heterostructure of Graphene-Covered Gratings Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate Significance of Upstream Wall Conditions in Characterizing the Heat Transfer Phenomena of Rarefied Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1