Mechanical and Postfire Structural Performances of Concrete under Elevated Temperatures

Q3 Engineering Open Civil Engineering Journal Pub Date : 2023-08-01 DOI:10.28991/cej-2023-09-08-04
Vishal Murugan, A. Bahrami, Rakshit Srivastava, K. Satyanarayanan, Prakash Murugan, J. Arvind
{"title":"Mechanical and Postfire Structural Performances of Concrete under Elevated Temperatures","authors":"Vishal Murugan, A. Bahrami, Rakshit Srivastava, K. Satyanarayanan, Prakash Murugan, J. Arvind","doi":"10.28991/cej-2023-09-08-04","DOIUrl":null,"url":null,"abstract":"This article investigates the mechanical and postfire structural performances of concrete under elevated temperatures (200°C, 400°C, 600°C, and 800°C) after 7 and 28 days of concrete curing. The main objective of this study is to evaluate the post-fire behavior of concrete structures and how their modulus of elasticity values influence their structural parameters. Mechanical studies, namely, the compressive strength, splitting tensile strength, and flexural strength, were performed on cubes, cylinders, and prism beams under normal and elevated temperatures. Non-destructive tests, like rebound hammer and ultrasonic pulse velocity, were also conducted on concrete cubes to obtain the strength of concrete before and after heating the specimens. Microstructural studies, in particular, scanning electron microscope and energy dispersive x-ray spectroscopy, were done to analyze the changes in the chemical composition of concrete under the effect of the temperatures. The weight loss of the concrete specimens was assessed under the elevated temperatures. The results indicated that the geometric shapes of the specimens influenced the loss in the moisture content of concrete under an elevated temperature scenario. Microstructural studies revealed the changes in the chemical composition under the elevated temperatures. The results of this research can be further integrated for industrial applications. Doi: 10.28991/CEJ-2023-09-08-04 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-08-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the mechanical and postfire structural performances of concrete under elevated temperatures (200°C, 400°C, 600°C, and 800°C) after 7 and 28 days of concrete curing. The main objective of this study is to evaluate the post-fire behavior of concrete structures and how their modulus of elasticity values influence their structural parameters. Mechanical studies, namely, the compressive strength, splitting tensile strength, and flexural strength, were performed on cubes, cylinders, and prism beams under normal and elevated temperatures. Non-destructive tests, like rebound hammer and ultrasonic pulse velocity, were also conducted on concrete cubes to obtain the strength of concrete before and after heating the specimens. Microstructural studies, in particular, scanning electron microscope and energy dispersive x-ray spectroscopy, were done to analyze the changes in the chemical composition of concrete under the effect of the temperatures. The weight loss of the concrete specimens was assessed under the elevated temperatures. The results indicated that the geometric shapes of the specimens influenced the loss in the moisture content of concrete under an elevated temperature scenario. Microstructural studies revealed the changes in the chemical composition under the elevated temperatures. The results of this research can be further integrated for industrial applications. Doi: 10.28991/CEJ-2023-09-08-04 Full Text: PDF
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温下混凝土的力学和火灾后结构性能
本文研究了混凝土在高温下(200°C、400°C、600°C和800°C)养护7天和28天后的力学和火灾后结构性能。本研究的主要目的是评估混凝土结构的火灾后行为及其弹性模量值如何影响其结构参数。力学研究,即抗压强度、劈裂拉伸强度和弯曲强度,在正常和高温下对立方体、圆柱体和棱柱梁进行了研究。对混凝土立方体进行了反弹锤、超声脉冲速度等无损试验,得到了试件加热前后混凝土的强度。通过微观结构研究,特别是扫描电镜和能量色散x射线能谱分析了温度作用下混凝土化学成分的变化。研究了高温作用下混凝土试件的失重情况。结果表明,在高温条件下,试件几何形状对混凝土含水率损失有影响。显微结构研究揭示了高温下化学成分的变化。本研究成果可以进一步整合到工业应用中。Doi: 10.28991/CEJ-2023-09-08-04全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
期刊最新文献
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading Post Fire Behavior of Structural Reinforced Concrete Member (Slab) Repairing with Various Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1