{"title":"Bounding 2d functions by products of 1d functions","authors":"François Dorais, Dan Hathaway","doi":"10.1002/malq.202000008","DOIUrl":null,"url":null,"abstract":"<p>Given sets <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$X,Y$</annotation>\n </semantics></math> and a regular cardinal μ, let <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Y</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (X,Y,\\mu )$</annotation>\n </semantics></math> be the statement that for any function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$f : X \\times Y \\rightarrow \\mu$</annotation>\n </semantics></math>, there are functions <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_1 : X \\rightarrow \\mu$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <mi>Y</mi>\n <mo>→</mo>\n <mi>μ</mi>\n </mrow>\n <annotation>$g_2 : Y \\rightarrow \\mu$</annotation>\n </semantics></math> such that for all <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>X</mi>\n <mo>×</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$(x,y) \\in X \\times Y$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>max</mi>\n <mo>{</mo>\n <msub>\n <mi>g</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <msub>\n <mi>g</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$f(x,y) \\le \\max \\lbrace g_1(x), g_2(y) \\rbrace$</annotation>\n </semantics></math>. In <math>\n <semantics>\n <mi>ZFC</mi>\n <annotation>$\\mathsf {ZFC}$</annotation>\n </semantics></math>, the statement <math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> is false. However, we show the theory <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mtext>“the</mtext>\n <mspace></mspace>\n <mtext>club</mtext>\n <mspace></mspace>\n <mtext>filter</mtext>\n <mspace></mspace>\n <mtext>on</mtext>\n <mspace></mspace>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mspace></mspace>\n <mtext>is</mtext>\n <mspace></mspace>\n <mtext>normal”</mtext>\n <mo>+</mo>\n <mi>Φ</mi>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\text{``the club filter on $\\omega _1$ is normal''} + \\Phi (\\omega _1, \\omega _1, \\omega )$</annotation>\n </semantics></math> (which is implied by <math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mo>+</mo>\n <mi>DC</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}+ \\mathsf {DC}$</annotation>\n </semantics></math>+ “<math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>=</mo>\n <mi>L</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V = L(\\mathbb {R})$</annotation>\n </semantics></math>” + “ω<sub>1</sub> is measurable”) implies that for every <math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo><</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$\\alpha < \\omega _1$</annotation>\n </semantics></math> there is a <math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa \\in (\\alpha ,\\omega _1)$</annotation>\n </semantics></math> such that in some inner model, κ is measurable with Mitchell order <math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mi>α</mi>\n </mrow>\n <annotation>$\\ge \\alpha$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202000008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Given sets and a regular cardinal μ, let be the statement that for any function , there are functions and such that for all , . In , the statement is false. However, we show the theory (which is implied by + “” + “ω1 is measurable”) implies that for every there is a such that in some inner model, κ is measurable with Mitchell order .