H.264/AVC Fractional Motion Estimation Engine with Computation Reusing in HDTV1080P Real-Time Encoding Applications

Yang Song, Ming Shao, Zhenyu Liu, Shen Li, Lingfeng Li, T. Ikenaga, S. Goto
{"title":"H.264/AVC Fractional Motion Estimation Engine with Computation Reusing in HDTV1080P Real-Time Encoding Applications","authors":"Yang Song, Ming Shao, Zhenyu Liu, Shen Li, Lingfeng Li, T. Ikenaga, S. Goto","doi":"10.1109/SIPS.2007.4387600","DOIUrl":null,"url":null,"abstract":"H.264/AVC fractional motion estimation (FME) engine for HDTV1080p is proposed in this paper. In order to provide real-time processing capability with reasonable hardware cost, several techniques have been presented. Firstly, the H.264/AVC is optimized and only 1 reference frame and block modes above 8 × 8 are supported. Therefore, the computation is reduced to 11.4% and the PSNR loss is only 0.1dB. Secondly, the lossless inside-mode and cross-mode reusing techniques are adopted, which can reduce about 65% pixel generation and SATD calculation. Thirdly, the lossless optimized FME scheduling is used to remove the pipeline bubbles between adjacent 1/2-pel and 1/4-pel FME. The proposed FME engine is realized with TSMC 0.18¿m 1P6M CMOS technology and costs 203.2K gates and 52.8KB SRAM. Under 200MHz frequency, the proposed FME engine can real-time encode HDTV1080p at 30fps with 236mW power cost.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"1 1","pages":"509-514"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

H.264/AVC fractional motion estimation (FME) engine for HDTV1080p is proposed in this paper. In order to provide real-time processing capability with reasonable hardware cost, several techniques have been presented. Firstly, the H.264/AVC is optimized and only 1 reference frame and block modes above 8 × 8 are supported. Therefore, the computation is reduced to 11.4% and the PSNR loss is only 0.1dB. Secondly, the lossless inside-mode and cross-mode reusing techniques are adopted, which can reduce about 65% pixel generation and SATD calculation. Thirdly, the lossless optimized FME scheduling is used to remove the pipeline bubbles between adjacent 1/2-pel and 1/4-pel FME. The proposed FME engine is realized with TSMC 0.18¿m 1P6M CMOS technology and costs 203.2K gates and 52.8KB SRAM. Under 200MHz frequency, the proposed FME engine can real-time encode HDTV1080p at 30fps with 236mW power cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H.264/AVC分数运动估计引擎在HDTV1080P实时编码应用中的计算重用
提出了用于HDTV1080p的H.264/AVC分数运动估计(FME)引擎。为了在合理的硬件成本下提供实时处理能力,提出了几种技术。首先,对H.264/AVC进行了优化,只支持1个参考帧和8 × 8以上的块模式。因此,计算量减少到11.4%,PSNR损失仅为0.1dB。其次,采用无损内模和交叉模复用技术,可减少约65%的像素生成和SATD计算;第三,采用无损优化FME调度,去除相邻1/2-pel和1/4-pel FME之间的管道气泡。FME引擎采用TSMC 0.18¿m 1P6M CMOS技术实现,成本为203.2K栅极和52.8KB SRAM。在200MHz频率下,FME引擎可以以30fps的速度实时编码HDTV1080p,功耗为236mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Estimation of Direction of Arrival of Speech Source Using Three Microphones. Optimization of Calibration Algorithms on a Manycore Embedded Platform A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier Spectral Management of Multiple Wireless Signals Based Cognitive Radio Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1