A Study on Developing Cardiac Signals Recording Framework (CARDIF) Using a Reconfigurable Real-Time Embedded Processor

Uma Arun, N. Sriraam
{"title":"A Study on Developing Cardiac Signals Recording Framework (CARDIF) Using a Reconfigurable Real-Time Embedded Processor","authors":"Uma Arun, N. Sriraam","doi":"10.4018/IJBCE.2019070102","DOIUrl":null,"url":null,"abstract":"Due to recent developments in technology, there is a significant growth in healthcare monitoring systems. The most widely monitored human physiological parameters is electrocardiogram (ECG) which is useful for inferring the physiological state of humans. Most of the existing multi-channel ECG acquisition systems were not accessible in resource-constrained settings. This research study proposes a cardiac signal recording framework (CARDIF) using a reconfigurable input-output real-time embedded processor by employing a virtual instrumentation platform. The signal acquisition was configured using Lab VIEW virtual instrumentation block sets. A graphical user interface (GUI) was developed for real-time data acquisition and visualization. The time domain heart rate variability (HRV) statistics were calculated using CARDIF, and the same were compared with a clinical grade 12-channel ECG system. The quality of the acquired signals obtained from the proposed and standard systems was measured and compared by calculating signal-to-noise ratio (SNR). The proposed CARDIF was evaluated qualitatively by visual inspection by a clinician and quantitatively by fidelity measures and vital parameters estimation. The results are quite promising and can be extended for clinical validations.","PeriodicalId":73426,"journal":{"name":"International journal of biomedical engineering and clinical science","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical engineering and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJBCE.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to recent developments in technology, there is a significant growth in healthcare monitoring systems. The most widely monitored human physiological parameters is electrocardiogram (ECG) which is useful for inferring the physiological state of humans. Most of the existing multi-channel ECG acquisition systems were not accessible in resource-constrained settings. This research study proposes a cardiac signal recording framework (CARDIF) using a reconfigurable input-output real-time embedded processor by employing a virtual instrumentation platform. The signal acquisition was configured using Lab VIEW virtual instrumentation block sets. A graphical user interface (GUI) was developed for real-time data acquisition and visualization. The time domain heart rate variability (HRV) statistics were calculated using CARDIF, and the same were compared with a clinical grade 12-channel ECG system. The quality of the acquired signals obtained from the proposed and standard systems was measured and compared by calculating signal-to-noise ratio (SNR). The proposed CARDIF was evaluated qualitatively by visual inspection by a clinician and quantitatively by fidelity measures and vital parameters estimation. The results are quite promising and can be extended for clinical validations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可重构实时嵌入式处理器开发心脏信号记录框架的研究
由于最近技术的发展,医疗保健监测系统有了显著的增长。监测最广泛的人体生理参数是心电图(ECG),它有助于推断人的生理状态。大多数现有的多通道心电采集系统在资源受限的环境下无法使用。本研究提出了一种心脏信号记录框架(CARDIF),该框架采用可重构输入输出实时嵌入式处理器,采用虚拟仪器平台。信号采集使用Lab VIEW虚拟仪器模块集进行配置。开发了用于实时数据采集和可视化的图形用户界面(GUI)。使用CARDIF计算时域心率变异性(HRV)统计数据,并与临床级12通道心电图系统进行比较。通过计算信噪比(SNR),测量和比较了从提出的系统和标准系统获得的采集信号的质量。建议的CARDIF通过临床医生的目视检查进行定性评估,通过保真度测量和重要参数估计进行定量评估。结果很有希望,可以扩展到临床验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Safety Evaluation of Recombinant Bovine Lactoferrin as a Novel Biomaterial Determinants of Neonatal Outcomes for Preterm Infants Admitted to the Neonatal Intensive Care Unit at Ndola Teaching Hospital in Ndola District, Zambia Predicative Meaning of Radioiodine Pharmacokinetics Indices for Evaluation of Radioablation Efficacy of Thyroid Residuum in Patients with Differentiated Thyroid Cancer Epidemiology and Diagnostic Methods of Foot-and-Mouth Disease: A Review The Effectiveness of Three-Dimensional Planning and Augmented Reality Navigation-Assisted Total Hip Arthroplasty: A Systematic Review and Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1