Image compression and reconstruction in compressive sensing paradigm

Sanjay M Belgaonkar , Vipula Singh
{"title":"Image compression and reconstruction in compressive sensing paradigm","authors":"Sanjay M Belgaonkar ,&nbsp;Vipula Singh","doi":"10.1016/j.gltp.2022.03.026","DOIUrl":null,"url":null,"abstract":"<div><p>Compressive sensing (CS) is a new branch of research with applications in signal processing, medical imaging, seismology, communications, and a variety of other fields. It assures successful data compression and faithful reconstruction by considering a smaller number of linear measurements compared to its dimensions. In this paper, we have shown CS paradigm for image compression and reconstruction. We have considered the Basis Pursuit (BP), Lp – Reweighted (Least Squares Method), Orthogonal Matching Pursuit (OMP) and Fusion of OMP &amp; BP algorithms to obtain the compressive measurements and faithful reconstruction. The results are analyzed by varying sparsity level and Compression Ratio (CR) and then calculating the Peak Signal to Noise Ratio (PSNR) value. The obtained results show that OMP performs better for standard test images &amp; satellite images and Fusion of OMP &amp; BP performs better for biomedical images.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 220-224"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000322/pdfft?md5=fa57e82fc41ee84d1855dab324cea073&pid=1-s2.0-S2666285X22000322-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Compressive sensing (CS) is a new branch of research with applications in signal processing, medical imaging, seismology, communications, and a variety of other fields. It assures successful data compression and faithful reconstruction by considering a smaller number of linear measurements compared to its dimensions. In this paper, we have shown CS paradigm for image compression and reconstruction. We have considered the Basis Pursuit (BP), Lp – Reweighted (Least Squares Method), Orthogonal Matching Pursuit (OMP) and Fusion of OMP & BP algorithms to obtain the compressive measurements and faithful reconstruction. The results are analyzed by varying sparsity level and Compression Ratio (CR) and then calculating the Peak Signal to Noise Ratio (PSNR) value. The obtained results show that OMP performs better for standard test images & satellite images and Fusion of OMP & BP performs better for biomedical images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压缩感知范式下的图像压缩与重构
压缩感知(CS)是一门新兴的研究分支,在信号处理、医学成像、地震学、通信等诸多领域都有应用。它通过考虑比其维度更少的线性测量来确保成功的数据压缩和忠实的重建。在本文中,我们展示了用于图像压缩和重建的CS范式。我们考虑了基追踪(BP), Lp -加权(最小二乘法),正交匹配追踪(OMP)和OMP融合;BP算法获得压缩测量值并忠实重建。通过改变稀疏度和压缩比(CR)来分析结果,然后计算峰值信噪比(PSNR)。得到的结果表明,OMP对标准测试图像具有更好的性能。卫星图像与OMP融合BP在生物医学图像上表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Energy Efficient Secure Routing Protocol for Mobile Ad-Hoc Network Grid interconnected H-bridge multilevel inverter for renewable power applications using repeating units and level boosting network Power Generation Using Ocean Waves: A Review Development of an Arabic HQAS-based ASAG to consider an ignored knowledge in misspelled multiple words short answers Smartphone assist deep neural network to detect the citrus diseases in Agri-informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1