Identifying Messenger Platform Preferences using Multiple Linear Regression and Conjoint Analyses

Evi Triandini, Gusti Ngurah, S. Wijaya, Riza Wulandari, Ni Wayan, Cahya Ayu, Pratami, Ketut Putu Suniantara, Candra Ahmadi, Wijaya Wulandari Pratami Suniantara Triandini, Ahmadi
{"title":"Identifying Messenger Platform Preferences using Multiple Linear Regression and Conjoint Analyses","authors":"Evi Triandini, Gusti Ngurah, S. Wijaya, Riza Wulandari, Ni Wayan, Cahya Ayu, Pratami, Ketut Putu Suniantara, Candra Ahmadi, Wijaya Wulandari Pratami Suniantara Triandini, Ahmadi","doi":"10.20473/jisebi.8.2.119-129","DOIUrl":null,"url":null,"abstract":"Background: The rapid development of telecommunication technology has prompted the creation of various messenger applications. The competition among social messengers to gain market share is becoming tighter.\nObjective: This study aims to capture user preferences for messenger platforms and inform software development companies to improve their products based on user needs.\nMethods: This research uses quantitative methods, i.e., categorical analysis and multiple linear regression analysis, to extend the results from qualitative methods that identify the preferences in past studies. The data were obtained through a questionnaire.\nResults: The results show that customers are influenced by accessibility, flexibility, effectiveness and chat history. Meanwhile, users are influenced by responsiveness, user-friendly interface, performance, personal needs, privacy and security, and customer services.\nConclusion: The research can identify the indicators to guide the creation of an ideal messenger platform based on customer and user preferences.\n \nKeywords: Conjoint, Messenger Platform, Multiple Linear Regression, Preference","PeriodicalId":16185,"journal":{"name":"Journal of Information Systems Engineering and Business Intelligence","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems Engineering and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/jisebi.8.2.119-129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: The rapid development of telecommunication technology has prompted the creation of various messenger applications. The competition among social messengers to gain market share is becoming tighter. Objective: This study aims to capture user preferences for messenger platforms and inform software development companies to improve their products based on user needs. Methods: This research uses quantitative methods, i.e., categorical analysis and multiple linear regression analysis, to extend the results from qualitative methods that identify the preferences in past studies. The data were obtained through a questionnaire. Results: The results show that customers are influenced by accessibility, flexibility, effectiveness and chat history. Meanwhile, users are influenced by responsiveness, user-friendly interface, performance, personal needs, privacy and security, and customer services. Conclusion: The research can identify the indicators to guide the creation of an ideal messenger platform based on customer and user preferences.   Keywords: Conjoint, Messenger Platform, Multiple Linear Regression, Preference
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多元线性回归和联合分析识别信使平台偏好
背景:通信技术的飞速发展催生了各种各样的信使应用程序。社交软件之间争夺市场份额的竞争越来越激烈。目的:本研究旨在捕捉用户对信使平台的偏好,并告知软件开发公司根据用户需求改进其产品。方法:本研究采用定量方法,即分类分析和多元线性回归分析,对过去研究中识别偏好的定性方法的结果进行了扩展。数据是通过问卷调查获得的。结果:结果表明,可访问性、灵活性、有效性和聊天记录对客户产生了影响。同时,用户还受到响应速度、用户友好界面、性能、个人需求、隐私和安全以及客户服务的影响。结论:本研究可以确定基于客户和用户偏好的理想信使平台的创建指标。关键词:联合,信使平台,多元线性回归,偏好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis on a Large Indonesian Product Review Dataset Leveraging Biotic Interaction Knowledge Graph and Network Analysis to Uncover Insect Vectors of Plant Virus Model-based Decision Support System Using a System Dynamics Approach to Increase Corn Productivity Optimizing Support Vector Machine Performance for Parkinson's Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction A Practical Approach to Enhance Data Quality Management in Government: Case Study of Indonesian Customs and Excise Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1