{"title":"APPLICATION OF COATINGS MADE BY PLASMA SPRAY AND PVD METHODS FOR PROTECTION OF GRAPHITE MOULDS","authors":"I. Nejman, M. Richert, P. Zawadzka","doi":"10.7494/MAFE.2016.42.2.95","DOIUrl":null,"url":null,"abstract":"The results of our research on the application of coatings for protecting industrial casting molds are presented. Tests were carried out on graphite molds with deposited Al2O3 coatings containing the addition of glassy carbon and with W/Zr/DLC coatings, both examined after the process of pouring molds with molten aluminum bronze. The coatings were applied by two different methods; i.e., plasma spraying in the case of Al2O3 + glassy carbon coating and PVD in the case of W/Zr/DLC coating. Reference tests were also conducted on graphite molds without coating. The use of protective coatings on graphite molds seems to be an effective solution. Studies have shown that coatings have good resistance during the casting process. The liquid metal sticking to the surface did not penetrate deep inside the graphite mold. The use of coating technology reduces the amount of downtime necessary to replace worn molds and increases the efficiency of the casting process. Application of coatings made by plasma spray and PVD methods for protection of graphite moulds Normal 0 21 false false false PL X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:Standardowy; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:\"\"; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:10.0pt; mso-bidi-font-size:12.0pt; font-family:\"Verdana\",sans-serif; mso-fareast-language:EN-US;}","PeriodicalId":18751,"journal":{"name":"Metallurgy and Foundry Engineering","volume":"11 1","pages":"95"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgy and Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MAFE.2016.42.2.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The results of our research on the application of coatings for protecting industrial casting molds are presented. Tests were carried out on graphite molds with deposited Al2O3 coatings containing the addition of glassy carbon and with W/Zr/DLC coatings, both examined after the process of pouring molds with molten aluminum bronze. The coatings were applied by two different methods; i.e., plasma spraying in the case of Al2O3 + glassy carbon coating and PVD in the case of W/Zr/DLC coating. Reference tests were also conducted on graphite molds without coating. The use of protective coatings on graphite molds seems to be an effective solution. Studies have shown that coatings have good resistance during the casting process. The liquid metal sticking to the surface did not penetrate deep inside the graphite mold. The use of coating technology reduces the amount of downtime necessary to replace worn molds and increases the efficiency of the casting process. Application of coatings made by plasma spray and PVD methods for protection of graphite moulds Normal 0 21 false false false PL X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:Standardowy; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:10.0pt; mso-bidi-font-size:12.0pt; font-family:"Verdana",sans-serif; mso-fareast-language:EN-US;}