An Automated Grading/Feedback System for 3-View Engineering Drawings using RANSAC

Y. Kwon, Sara McMains
{"title":"An Automated Grading/Feedback System for 3-View Engineering Drawings using RANSAC","authors":"Y. Kwon, Sara McMains","doi":"10.1145/2724660.2724682","DOIUrl":null,"url":null,"abstract":"We propose a novel automated grading system that can compare two multiview engineering drawings consisting of three views that may have allowable translations, scales, and offsets, and can recognize frequent error types as well as individual drawing errors. We show that translation, scale, and offset-invariant comparison can be conducted by estimating the affine transformation for each individual view within drawings. Our system directly aims to evaluate students' skills creating multiview engineering drawings. Since it is important for our students to be familiar with widely used software such as AutoCAD, our system does not require a separate interface or environment, but directly grades the saved DWG/DXF files from AutoCAD. We show the efficacy of the proposed algorithm by comparing its results with human grading. Beyond the advantages of convenience and accuracy, based on our data set of students' answers, we can analyze the common errors of the class as a whole using our system.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose a novel automated grading system that can compare two multiview engineering drawings consisting of three views that may have allowable translations, scales, and offsets, and can recognize frequent error types as well as individual drawing errors. We show that translation, scale, and offset-invariant comparison can be conducted by estimating the affine transformation for each individual view within drawings. Our system directly aims to evaluate students' skills creating multiview engineering drawings. Since it is important for our students to be familiar with widely used software such as AutoCAD, our system does not require a separate interface or environment, but directly grades the saved DWG/DXF files from AutoCAD. We show the efficacy of the proposed algorithm by comparing its results with human grading. Beyond the advantages of convenience and accuracy, based on our data set of students' answers, we can analyze the common errors of the class as a whole using our system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用RANSAC的3视图工程图纸自动分级/反馈系统
我们提出了一种新的自动分级系统,可以比较由三个视图组成的两个多视图工程图,这些视图可能具有允许的平移,比例尺和偏移量,并且可以识别常见的错误类型以及单个绘图错误。我们表明,平移、比例和偏移不变的比较可以通过估计图纸中每个单独视图的仿射变换来进行。我们的系统直接旨在评估学生绘制多视图工程图的技能。由于熟悉AutoCAD等广泛使用的软件对我们的学生很重要,所以我们的系统不需要单独的界面或环境,而是直接从AutoCAD中保存DWG/DXF文件进行评分。我们通过将其结果与人工评分结果进行比较来证明所提出算法的有效性。除了方便和准确的优点之外,基于我们的学生答案数据集,我们可以使用我们的系统分析整个班级的常见错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning is Not a Spectator Sport: Doing is Better than Watching for Learning from a MOOC Learnersourcing of Complex Assessments All It Takes Is One: Evidence for a Strategy for Seeding Large Scale Peer Learning Interactions Designing MOOCs as Interactive Places for Collaborative Learning Who You Are or What You Do: Comparing the Predictive Power of Demographics vs. Activity Patterns in Massive Open Online Courses (MOOCs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1