Jinchao Chen, Haoran Zhang, Ruimeng He, Chenglie Du, Jie Cui, Xiaoying Sun
{"title":"Design and implementation of a real-time simulation platform for embedded applications on general-purpose operating systems","authors":"Jinchao Chen, Haoran Zhang, Ruimeng He, Chenglie Du, Jie Cui, Xiaoying Sun","doi":"10.1177/00375497231189285","DOIUrl":null,"url":null,"abstract":"In recent years, the number of invested resources adopted in experiments of embedded applications dropped significantly as many simulation technologies are widely used. However, the efficiency of simulations is seriously influenced by some expensive and difficult-to-obtain devices. It is urgent and of great significance to build a universal simulation platform for embedded applications on general-purpose operating systems with an objective of improving the efficiency and effectiveness of system development and implementation. Since virtualization technology can greatly enhance the simulation efficiency by providing virtual models to simulate the behaviors of real devices, this paper designs and realizes a real-time simulation platform on general-purpose operating systems with the virtualization technology such that embedded applications would be correctly and efficiently debugged and tested on the general-purpose operating systems. The proposed simulation platform contains four layers named hardware resource, virtualization, virtual runtime environment, and interface adaptation, allowing dynamic debugging and testing of embedded applications without requiring the actual presence of real devices. Experiments are conducted to verify the functionalities of the proposed simulation platform, and results demonstrate that the proposed simulation platform can meet the real-time and high reliability requirements of embedded applications.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"68 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231189285","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the number of invested resources adopted in experiments of embedded applications dropped significantly as many simulation technologies are widely used. However, the efficiency of simulations is seriously influenced by some expensive and difficult-to-obtain devices. It is urgent and of great significance to build a universal simulation platform for embedded applications on general-purpose operating systems with an objective of improving the efficiency and effectiveness of system development and implementation. Since virtualization technology can greatly enhance the simulation efficiency by providing virtual models to simulate the behaviors of real devices, this paper designs and realizes a real-time simulation platform on general-purpose operating systems with the virtualization technology such that embedded applications would be correctly and efficiently debugged and tested on the general-purpose operating systems. The proposed simulation platform contains four layers named hardware resource, virtualization, virtual runtime environment, and interface adaptation, allowing dynamic debugging and testing of embedded applications without requiring the actual presence of real devices. Experiments are conducted to verify the functionalities of the proposed simulation platform, and results demonstrate that the proposed simulation platform can meet the real-time and high reliability requirements of embedded applications.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.