Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]

IF 3.3 2区 物理与天体物理 Q2 OPTICS Chinese Optics Letters Pub Date : 2023-01-01 DOI:10.3788/col202321.033001
Yahui Liu, Yufei Ma
{"title":"Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]","authors":"Yahui Liu, Yufei Ma","doi":"10.3788/col202321.033001","DOIUrl":null,"url":null,"abstract":"In the field of absorption spectroscopy, the multipass cell (MPC) is one of the key elements. It has the advantages of simple structure, easy adjustment, and high spectral coverage, which is an effective way to improve the detection sensitivity of gas sensing systems such as tunable diode laser absorption spectroscopy. This invited paper summarizes the design theory and the research results of some mainstream types of MPCs based on two mirrors and more than two mirrors in recent years, and briefly introduces the application of some processed products. The design theory of modified ABCD matrix and vector reflection principle are explained in detail. Finally, trends in its development are predicted.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"52 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.033001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 30

Abstract

In the field of absorption spectroscopy, the multipass cell (MPC) is one of the key elements. It has the advantages of simple structure, easy adjustment, and high spectral coverage, which is an effective way to improve the detection sensitivity of gas sensing systems such as tunable diode laser absorption spectroscopy. This invited paper summarizes the design theory and the research results of some mainstream types of MPCs based on two mirrors and more than two mirrors in recent years, and briefly introduces the application of some processed products. The design theory of modified ABCD matrix and vector reflection principle are explained in detail. Finally, trends in its development are predicted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吸收光谱的多通电池痕量气体传感技术研究进展[特邀]
在吸收光谱学领域,多通池(MPC)是关键元件之一。它具有结构简单、调节方便、光谱覆盖率高等优点,是提高可调谐二极管激光吸收光谱等气体传感系统检测灵敏度的有效途径。本文综述了近年来基于双镜和多镜的几种主流mpc的设计理论和研究成果,并简要介绍了一些加工产品的应用情况。详细阐述了改进ABCD矩阵的设计原理和矢量反射原理。最后,对其发展趋势进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
期刊最新文献
Photon pair generation from lithium niobate metasurface with tunable spatial entanglement High-dimensional frequency conversion in a hot atomic system All-solid-state far-UVC pulse laser at 222 nm wavelength for UVC disinfection Intracavity third-harmonic generation in a continuous-wave/self-mode-locked semiconductor disk laser Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1