Utelbayeva Ab, Zhanabay N, Suleimenov En, Utelbayev Bt
{"title":"The Nature of Bonds in the Atomic Structure of Substances","authors":"Utelbayeva Ab, Zhanabay N, Suleimenov En, Utelbayev Bt","doi":"10.26502/ijpaes.202132","DOIUrl":null,"url":null,"abstract":"It follows from the atomic structure of substances that they include the same electrons, protons and neutrons, which individualize atoms in terms of quantity and structural-energy interaction. These atoms in the form of chemical elements form chemical bonds between themselves or other atoms and form the \"chemical individuals\" of specific compounds. And during the course of chemical, biochemical, electrochemical processes, the original chemical bonds are broken in the reagents and new chemical bonds are formed. The purpose of this work was to study and elucidate the nature of the chemical bond in the atomic structure of substances in order to establish the fundamental laws of natural science. It is assumed that in the course of evolution of the Universe during collisions of oppositely charged electrical matters they break up into subelementary dipoles and magnetic bipoles. As a result of this process the formed fluctuating subelementary matter increases the entropy of the system, which causes non-equilibrium processes. Using Prigogine's terminology, fluctuating systems are a source of non-equilibrium, which generates \"order out of chaos.\" It is believed that the formation of \"electromagnetic particles\" comes from the annihilation products of positron electron, proton antiproton and other pairs and is a creation of Nature. These \"electromagnetic particles\" carry out connections in the atomic structure of substances. The formation of \"subelementary dipoles\" in the process of annihilations allows us to judge that the electron positron representing an elementary charge also","PeriodicalId":22532,"journal":{"name":"The International Journal of Plant, Animal and Environmental Sciences","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Plant, Animal and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/ijpaes.202132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It follows from the atomic structure of substances that they include the same electrons, protons and neutrons, which individualize atoms in terms of quantity and structural-energy interaction. These atoms in the form of chemical elements form chemical bonds between themselves or other atoms and form the "chemical individuals" of specific compounds. And during the course of chemical, biochemical, electrochemical processes, the original chemical bonds are broken in the reagents and new chemical bonds are formed. The purpose of this work was to study and elucidate the nature of the chemical bond in the atomic structure of substances in order to establish the fundamental laws of natural science. It is assumed that in the course of evolution of the Universe during collisions of oppositely charged electrical matters they break up into subelementary dipoles and magnetic bipoles. As a result of this process the formed fluctuating subelementary matter increases the entropy of the system, which causes non-equilibrium processes. Using Prigogine's terminology, fluctuating systems are a source of non-equilibrium, which generates "order out of chaos." It is believed that the formation of "electromagnetic particles" comes from the annihilation products of positron electron, proton antiproton and other pairs and is a creation of Nature. These "electromagnetic particles" carry out connections in the atomic structure of substances. The formation of "subelementary dipoles" in the process of annihilations allows us to judge that the electron positron representing an elementary charge also