Jiaqing Luo, Bin Xiao, Qingjun Xiao, Jiannong Cao, M. Guo
{"title":"Modeling and Defending against Adaptive BitTorrent Worms in Peer-to-Peer Networks","authors":"Jiaqing Luo, Bin Xiao, Qingjun Xiao, Jiannong Cao, M. Guo","doi":"10.1145/2567925","DOIUrl":null,"url":null,"abstract":"BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing protocols. Rather than downloading a file from a single source, the protocol allows users to join a swarm of peers to download and upload from each other simultaneously. Worms exploiting information from BT servers or trackers can cause serious damage to participating peers, which unfortunately has been neglected previously. In this article, we first present a new worm, called Adaptive BitTorrent worm (A-BT worm), which finds new victims and propagates sending forged requests to trackers. To reduce its abnormal behavior, the worm estimates the ratio of infected peers and adaptively adjusts its propagation speed. We then build a hybrid model to precisely characterize the propagation behavior of the worm. We also propose a statistical method to automatically detect the worm from the tracker by estimating the variance of the time intervals of requests. To slow down the worm propagation, we design a safe strategy in which the tracker returns secured peers when receives a request. Finally, we evaluate the accuracy of the hybrid model, and the effectiveness of our detection method and containment strategy through simulations.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"20 1","pages":"5:1-5:17"},"PeriodicalIF":2.2000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2567925","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing protocols. Rather than downloading a file from a single source, the protocol allows users to join a swarm of peers to download and upload from each other simultaneously. Worms exploiting information from BT servers or trackers can cause serious damage to participating peers, which unfortunately has been neglected previously. In this article, we first present a new worm, called Adaptive BitTorrent worm (A-BT worm), which finds new victims and propagates sending forged requests to trackers. To reduce its abnormal behavior, the worm estimates the ratio of infected peers and adaptively adjusts its propagation speed. We then build a hybrid model to precisely characterize the propagation behavior of the worm. We also propose a statistical method to automatically detect the worm from the tracker by estimating the variance of the time intervals of requests. To slow down the worm propagation, we design a safe strategy in which the tracker returns secured peers when receives a request. Finally, we evaluate the accuracy of the hybrid model, and the effectiveness of our detection method and containment strategy through simulations.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.