{"title":"The relation between GC systems and SMBH in spiral galaxies: The link to the M• – M* correlation","authors":"R. A. González-Lópezlira","doi":"10.1017/S1743921323000145","DOIUrl":null,"url":null,"abstract":"Abstract We explore the relationship between globular cluster total number, NGC, and central black hole mass, M•, in spiral galaxies. Including cosmic scatter, log M• ∝ (1.64 ± 0.24) log NGC. Whereas in ellipticals the correlation is linear [log M• ∝ (1.02 ± 0.10) log NGC], and hence could be due to statistical convergence through mergers, this mechanism cannot explain the much steeper correlation in spirals. Additionally, we derive total stellar galaxy mass, M*, from its two-slope correlation with NGC (Hudson et al. 2014). In the M• versus M* parameter space, with M* derived from NGC, M• ∝ (1.48 ± 0.18) log M* for ellipticals, and M• ∝ (1.21 ± 0.16) log M* for spirals. The observed agreement between ellipticals and spirals may imply that black holes and galaxies co-evolve through “calm” accretion, AGN feedback and other secular processes.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"29 1","pages":"314 - 317"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921323000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We explore the relationship between globular cluster total number, NGC, and central black hole mass, M•, in spiral galaxies. Including cosmic scatter, log M• ∝ (1.64 ± 0.24) log NGC. Whereas in ellipticals the correlation is linear [log M• ∝ (1.02 ± 0.10) log NGC], and hence could be due to statistical convergence through mergers, this mechanism cannot explain the much steeper correlation in spirals. Additionally, we derive total stellar galaxy mass, M*, from its two-slope correlation with NGC (Hudson et al. 2014). In the M• versus M* parameter space, with M* derived from NGC, M• ∝ (1.48 ± 0.18) log M* for ellipticals, and M• ∝ (1.21 ± 0.16) log M* for spirals. The observed agreement between ellipticals and spirals may imply that black holes and galaxies co-evolve through “calm” accretion, AGN feedback and other secular processes.