Proposal of a simplified methodology for reverberation time prediction in standard medium size rooms with non-uniformly distributed sound absorption

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2023-01-01 DOI:10.1051/aacus/2023025
D. Mateus, A. Pereira
{"title":"Proposal of a simplified methodology for reverberation time prediction in standard medium size rooms with non-uniformly distributed sound absorption","authors":"D. Mateus, A. Pereira","doi":"10.1051/aacus/2023025","DOIUrl":null,"url":null,"abstract":"Sabine, Eyring and Millington formulas are commonly used for reverberation time prediction, mainly, as a calculation tool in building acoustics design. These classical theories are valid only for rooms with diffuse sound fields, in which the energy density is constant throughout the enclosure, an acoustic condition that is achieved only when using surfaces with low sound absorption. Despite these limitations, Sabine’s formula is still the most widely used in the prediction of the reverberation time, when spaces such as classrooms or offices are addressed. However, for these rooms, after the construction works are completed, it is quite often verified that the implemented sound-absorbent surface area is manifestly insufficient to fulfill the reverberation time requirement. In this technical note a simplified approach for reverberation time prediction, based on the use of Sabine’s formula, is proposed, that can be useful in acoustic design of classrooms or offices, due to its simplicity. A previous correction to the sound absorption coefficient of the lining materials declared by the manufacturer is here proposed, making use of an empirical correction that was achieved from in situ experimental results and through geometrical room acoustic modelling. The empirical correction can be employed for room conditions where diffuse sound field is not met, composed of small or medium volumes (volume below 300 m3), with regular geometry, approaching parallelepipedal shapes, where the average height is below 4.0 m.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2023025","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sabine, Eyring and Millington formulas are commonly used for reverberation time prediction, mainly, as a calculation tool in building acoustics design. These classical theories are valid only for rooms with diffuse sound fields, in which the energy density is constant throughout the enclosure, an acoustic condition that is achieved only when using surfaces with low sound absorption. Despite these limitations, Sabine’s formula is still the most widely used in the prediction of the reverberation time, when spaces such as classrooms or offices are addressed. However, for these rooms, after the construction works are completed, it is quite often verified that the implemented sound-absorbent surface area is manifestly insufficient to fulfill the reverberation time requirement. In this technical note a simplified approach for reverberation time prediction, based on the use of Sabine’s formula, is proposed, that can be useful in acoustic design of classrooms or offices, due to its simplicity. A previous correction to the sound absorption coefficient of the lining materials declared by the manufacturer is here proposed, making use of an empirical correction that was achieved from in situ experimental results and through geometrical room acoustic modelling. The empirical correction can be employed for room conditions where diffuse sound field is not met, composed of small or medium volumes (volume below 300 m3), with regular geometry, approaching parallelepipedal shapes, where the average height is below 4.0 m.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非均匀吸声条件下标准中型房间混响时间预测的简化方法
Sabine、Eyring和Millington公式通常用于混响时间预测,主要作为建筑声学设计中的计算工具。这些经典理论仅适用于具有漫射声场的房间,其中能量密度在整个外壳中是恒定的,这种声学条件只有在使用低吸声表面时才能实现。尽管有这些限制,Sabine的公式仍然是最广泛用于混响时间的预测,当教室或办公室等空间被处理时。然而,对于这些房间,在建筑工程完成后,经常被证实实施的吸声表面积明显不足以满足混响时间的要求。在本技术说明中,基于Sabine公式的使用,提出了一种简化的混响时间预测方法,由于其简单性,可用于教室或办公室的声学设计。在此建议对制造商声明的衬里材料的吸声系数进行先前的修正,利用从原位实验结果和几何室内声学建模中获得的经验修正。经验校正可用于不满足漫射声场的室内条件,由中小型体积(体积小于300 m3)组成,几何形状规则,接近平行六面体形状,平均高度在4.0 m以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1