Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS International Journal of Applied Mathematics and Computer Science Pub Date : 2022-03-01 DOI:10.34768/amcs-2022-0002
Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Q. Lv
{"title":"Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction","authors":"Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Q. Lv","doi":"10.34768/amcs-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"44 1","pages":"11 - 21"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Fast and smooth trajectory planning is crucial for modern control systems, e.g., missiles, aircraft, robots and AGVs. However, classical spline based trajectory planning tools introduce redundant constraints and parameters, leading to high costs of computation and complicating fast and smooth execution of trajectory planning tasks. A new tool is proposed that employs truncated power functions to annihilate some constraints and reduce the number of parameters in the optimal model. It enables solving a simplified optimal problem in a shorter time while keeping the trajectory sufficiently smooth. With an engineering background, our case studies show that the proposed method has advantages over other solutions. It is promising in regard to the demanding tasks of trajectory planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类基于参数约简和约束约简的线性系统快速平滑轨迹规划
快速、平稳的轨迹规划对于导弹、飞机、机器人和agv等现代控制系统至关重要。然而,传统的基于样条的轨迹规划工具引入了冗余的约束和参数,导致计算成本高,使轨迹规划任务的快速、顺利执行变得复杂。提出了一种利用截断幂函数消去约束条件,减少最优模型参数数量的新方法。它可以在较短的时间内解决简化的最优问题,同时保持轨迹足够平滑。在工程背景下,我们的案例研究表明,所提出的方法比其他解决方案具有优势。对于要求苛刻的轨迹规划任务,它是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
期刊最新文献
Improving Security Performance of Healthcare Data in the Internet of Medical Things using a Hybrid Metaheuristic Model Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances Choice of the p-norm for High Level Classification Features Pruning in Modern Convolutional Neural Networks With Local Sensitivity Analysis Travelling Waves for Low–Grade Glioma Growth and Response to A Chemotherapy Model Asts: Autonomous Switching of Task–Level Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1