Feature Selection and Implementation of IDS using Boosting algorithm

Utpal Shrivastava, Neelam Sharma
{"title":"Feature Selection and Implementation of IDS using Boosting algorithm","authors":"Utpal Shrivastava, Neelam Sharma","doi":"10.1109/ComPE49325.2020.9200072","DOIUrl":null,"url":null,"abstract":"Monitoring of the data traffic is done by Intrusion detection system (IDS) in the network and identify possibility of attacks with can cause harm in the network. The growing digital age where so many host are connected to network and digital transaction take place, it becomes important to secure one’s data in the network. In the proposed work, NSL-KDD train dataset in ration 8:2 is used to train and test a model. To identify the impact of different set of dataset features considered by comparing the accuracy calculated.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"25 1","pages":"853-858"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring of the data traffic is done by Intrusion detection system (IDS) in the network and identify possibility of attacks with can cause harm in the network. The growing digital age where so many host are connected to network and digital transaction take place, it becomes important to secure one’s data in the network. In the proposed work, NSL-KDD train dataset in ration 8:2 is used to train and test a model. To identify the impact of different set of dataset features considered by comparing the accuracy calculated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于boost算法的入侵检测特征选择与实现
入侵检测系统(IDS)对网络中的数据流量进行监控,识别出可能对网络造成危害的攻击。随着数字时代的发展,越来越多的主机连接到网络,数字交易的发生,网络数据的安全变得越来越重要。在本文中,使用比例为8:2的NSL-KDD训练数据集对模型进行训练和测试。通过比较所考虑的不同数据集特征对计算精度的影响来识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Architecture Search with Improved Genetic Algorithm for Image Classification Electricity Demand Prediction using Data Driven Forecasting Scheme: ARIMA and SARIMA for Real-Time Load Data of Assam Freeware Solution for Preventing Data Leakage by Insider for Windows Framework Developing a Highly Secure and High Capacity LSB Steganography Technique using PRNG Assessment of Technical Parameters of Renewable Energy System : An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1