Deep learning-based radar-assisted beam prediction

Yifu. Liu, Quan Zhou, Xia Jing
{"title":"Deep learning-based radar-assisted beam prediction","authors":"Yifu. Liu, Quan Zhou, Xia Jing","doi":"10.1109/BMSB58369.2023.10211115","DOIUrl":null,"url":null,"abstract":"Beam selection in millimeter wave (mmWave) communication systems rely on information about the environment surrounding the communication target, and the use of deep learning methods to analyze sensing data acquired by low-cost radar sensors can effectively reduce communication overhead. In this paper, we further investigate the radar-based beam selection problem using deep learning methods. The beam selection performance of the Feature Pyramid Network (FPN) network and an optimized version of the Residual Networks (Resnet) network is evaluated for a large-scale real-world dataset, DeepSense 6G, and a targeted network is proposed for beam selection. The experimental results show that the accuracy of beam selection is improved by 18.5% compared to the original Lenet network.","PeriodicalId":13080,"journal":{"name":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","volume":"76 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB58369.2023.10211115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beam selection in millimeter wave (mmWave) communication systems rely on information about the environment surrounding the communication target, and the use of deep learning methods to analyze sensing data acquired by low-cost radar sensors can effectively reduce communication overhead. In this paper, we further investigate the radar-based beam selection problem using deep learning methods. The beam selection performance of the Feature Pyramid Network (FPN) network and an optimized version of the Residual Networks (Resnet) network is evaluated for a large-scale real-world dataset, DeepSense 6G, and a targeted network is proposed for beam selection. The experimental results show that the accuracy of beam selection is improved by 18.5% compared to the original Lenet network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的雷达辅助波束预测
毫米波(mmWave)通信系统中的波束选择依赖于通信目标周围环境的信息,利用深度学习方法分析低成本雷达传感器获取的传感数据可以有效降低通信开销。在本文中,我们使用深度学习方法进一步研究了基于雷达的波束选择问题。针对大规模真实数据集DeepSense 6G,评估了特征金字塔网络(FPN)网络和优化版本的残余网络(Resnet)网络的波束选择性能,并提出了波束选择的目标网络。实验结果表明,与原有的Lenet网络相比,该网络的波束选择精度提高了18.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Task Offloading Based on Scalable DAG in Cell-Free HetMEC Networks Resource Pre-caching Strategy of Digital Twin System Based on Hierarchical MEC Architecture Research on key technologies of audiovisual media microservices and industry applications A Closed-loop Operation and Maintenance Architecture based on Digital Twin for Electric Power Communication Networks Edge Fusion of Intelligent Industrial Park Based on MatrixOne and Pravega
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1