Seizure detection using Bessel k-form parameters in the empirical mode decomposition domain

A. Das, Faisal Ahmed, M. Bhuiyan
{"title":"Seizure detection using Bessel k-form parameters in the empirical mode decomposition domain","authors":"A. Das, Faisal Ahmed, M. Bhuiyan","doi":"10.1109/SKIMA.2014.7083538","DOIUrl":null,"url":null,"abstract":"In this paper, a statistical analysis of electroencephalogram (EEG) signals is carried out in the empirical mode decomposition (EMD) domain using a publicly available benchmark EEG database. First, the intrinsic mode functions (IMF) are extracted from the EEG signals in the EMD domain. Next, the investigation was carried whether the Bessel k-form (BKF) probability density function (pdf) can appropriately model the IMFs extracted in EMD domain of the EEG signals. It is shown that on an average, the BKF pdf is a suitable prior to model the first five IMFs extracted from various types of EEG recordings. After that, it is shown that the BKF parameters can distinguish among the EEG signals at those five IMF levels quite well. The analysis is further confirmed through the p-values obtained by one way analysis of variance (ANOVA). Thus, the BKF parameters in the EMD domain may be used to characterize EEG signals and help the electroencephalographers in developing fast and effective classifiers for seizure seizure detection.","PeriodicalId":22294,"journal":{"name":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","volume":"140 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2014.7083538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a statistical analysis of electroencephalogram (EEG) signals is carried out in the empirical mode decomposition (EMD) domain using a publicly available benchmark EEG database. First, the intrinsic mode functions (IMF) are extracted from the EEG signals in the EMD domain. Next, the investigation was carried whether the Bessel k-form (BKF) probability density function (pdf) can appropriately model the IMFs extracted in EMD domain of the EEG signals. It is shown that on an average, the BKF pdf is a suitable prior to model the first five IMFs extracted from various types of EEG recordings. After that, it is shown that the BKF parameters can distinguish among the EEG signals at those five IMF levels quite well. The analysis is further confirmed through the p-values obtained by one way analysis of variance (ANOVA). Thus, the BKF parameters in the EMD domain may be used to characterize EEG signals and help the electroencephalographers in developing fast and effective classifiers for seizure seizure detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在经验模态分解域中使用贝塞尔k形参数的癫痫检测
本文利用公开的基准脑电图数据库,在经验模态分解(EMD)域对脑电图信号进行统计分析。首先在EMD域中提取脑电信号的内禀模态函数(IMF);其次,研究贝塞尔k-形式(BKF)概率密度函数(pdf)能否对EEG信号EMD域中提取的imf进行合适的建模。结果表明,平均而言,BKF pdf是对从各种类型的EEG记录中提取的前五个imf建模的合适先验。结果表明,BKF参数能较好地区分这5个IMF水平下的脑电信号。通过单向方差分析(ANOVA)得到的p值进一步证实了分析结果。因此,EMD域的BKF参数可以用来表征脑电图信号,帮助脑电图学家开发快速有效的癫痫发作检测分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rule-based approach to business-IT misalignment symptom detection Adaptive noise reduction algorithm based on gradient in wavelet feature domain Key note speech 1: Predicting the overall value of decisions relating to software Stochastic local search for pattern set mining Two-handed hand gesture recognition for Bangla sign language using LDA and ANN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1