Viscoelasticity of a Single Polymer Chain

K. Nakajima, T. Nishi
{"title":"Viscoelasticity of a Single Polymer Chain","authors":"K. Nakajima, T. Nishi","doi":"10.11311/JSCTA1974.33.183","DOIUrl":null,"url":null,"abstract":"with a worm-like chain model, and thus gave microscopic information about entropic elasticity. Solvent effects on polymer chain conformations were also discussed. Nanofishing technique was extended for dynamic viscoelasitc measurement of single polymer chains. AFM cantilever was mechanically oscillated at its resonant frequency during stretching process. By this technique, we could quantitatively and simultaneously estimate elongation-dependent changes of stiffness and viscosity of a single chain itself with using a phenomenological model. The solvent effect on the viscosity in low extension regions was ensured that the viscosity under about 10 kHz perturbation was attributed to monomer-solvent friction. These methods were proved to be powerful to give the experimental proofs against several basic questions in polymer physics and furthermore will unveil hidden properties of polymer chains or polymer solutions by any macroscopic measurements in the future.","PeriodicalId":19096,"journal":{"name":"Netsu Sokutei","volume":"88 1","pages":"183-190"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netsu Sokutei","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11311/JSCTA1974.33.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

with a worm-like chain model, and thus gave microscopic information about entropic elasticity. Solvent effects on polymer chain conformations were also discussed. Nanofishing technique was extended for dynamic viscoelasitc measurement of single polymer chains. AFM cantilever was mechanically oscillated at its resonant frequency during stretching process. By this technique, we could quantitatively and simultaneously estimate elongation-dependent changes of stiffness and viscosity of a single chain itself with using a phenomenological model. The solvent effect on the viscosity in low extension regions was ensured that the viscosity under about 10 kHz perturbation was attributed to monomer-solvent friction. These methods were proved to be powerful to give the experimental proofs against several basic questions in polymer physics and furthermore will unveil hidden properties of polymer chains or polymer solutions by any macroscopic measurements in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单链聚合物的粘弹性
采用蠕虫状链模型,从而给出了熵弹性的微观信息。还讨论了溶剂对聚合物链构象的影响。将纳米钓鱼技术推广到聚合物单链的动态粘弹性测量中。在拉伸过程中,AFM悬臂梁在其共振频率处发生机械振荡。通过这种技术,我们可以同时定量地估计单链本身的刚度和粘度随长度的变化,并使用现象学模型。溶剂对低延伸区粘度的影响保证了在约10 kHz扰动下的粘度归因于单体溶剂摩擦。这些方法被证明是强有力的,为聚合物物理中的几个基本问题提供了实验证明,并将在未来通过任何宏观测量揭示聚合物链或聚合物溶液的隐藏性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stability of Materials in Lithium-Ion Cells Relationship between Vulcanizing Density and Thermal Diffusivity or Thermal Conductivity of Vulcanized Natural Rubber High Temperature Microbalance Technique for the Determination of the Metal Oxides Nonstoichiometry under Controlled Atmosphere Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy Phase Behavior of Thermotropic Cubic Mesogens under Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1