A method of iterative image normalization for tasks of visual navigation of UAVs

M. Elantcev, I. Arkhipov, R. Gafarov
{"title":"A method of iterative image normalization for tasks of visual navigation of UAVs","authors":"M. Elantcev, I. Arkhipov, R. Gafarov","doi":"10.18287/1613-0073-2019-2391-144-152","DOIUrl":null,"url":null,"abstract":"The work deals with a method of eliminating the perspective distortion of an image acquired from an unmanned aerial vehicle (UAV) camera in order to transform it to match the parameters of the satellite image. The normalization is performed in one of the two ways. The first variant consists in the calculation of an image transformation matrix based on the camera position and orientation. The second variant is based on matching the current frame with the previous one. The matching results in the shift, rotation, and scale parameters that are used to obtain an initial set of pairs of corresponding keypoints. From this set four pairs are selected to calculate the perspective transformation matrix. This matrix is in turn used to obtain a new set of pairs of corresponding keypoints. The process is repeated while the number of the pairs in the new set exceeds the number in the current one. The accumulated transformation matrix is then multiplied by the transformation matrix obtained during the normalization of the previous frame. The final part presents the results of the method that show that the proposed method can improve the accuracy of the visual navigation system at low computational costs.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-144-152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The work deals with a method of eliminating the perspective distortion of an image acquired from an unmanned aerial vehicle (UAV) camera in order to transform it to match the parameters of the satellite image. The normalization is performed in one of the two ways. The first variant consists in the calculation of an image transformation matrix based on the camera position and orientation. The second variant is based on matching the current frame with the previous one. The matching results in the shift, rotation, and scale parameters that are used to obtain an initial set of pairs of corresponding keypoints. From this set four pairs are selected to calculate the perspective transformation matrix. This matrix is in turn used to obtain a new set of pairs of corresponding keypoints. The process is repeated while the number of the pairs in the new set exceeds the number in the current one. The accumulated transformation matrix is then multiplied by the transformation matrix obtained during the normalization of the previous frame. The final part presents the results of the method that show that the proposed method can improve the accuracy of the visual navigation system at low computational costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对无人机视觉导航任务的迭代图像归一化方法
本文研究了一种消除从无人机(UAV)相机获取的图像的视角畸变的方法,以便对其进行变换以匹配卫星图像的参数。归一化以两种方式之一执行。第一种变型包括基于摄像机位置和方向的图像变换矩阵的计算。第二种变体基于当前帧与前一帧的匹配。匹配的结果是移位、旋转和缩放参数,这些参数用于获得一组初始的对应关键点对。从这个集合中选择四对来计算透视变换矩阵。然后使用这个矩阵来获得一组新的对应关键点对。当新集合中的配对数量超过当前集合中的配对数量时,重复此过程。然后将累积的变换矩阵与前一帧归一化过程中得到的变换矩阵相乘。最后给出了该方法的实验结果,表明该方法可以在较低的计算成本下提高视觉导航系统的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1