Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo

J. Dick, Daniel Rudolf, Hou-Ying Zhu
{"title":"Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo","authors":"J. Dick, Daniel Rudolf, Hou-Ying Zhu","doi":"10.1214/16-AAP1173","DOIUrl":null,"url":null,"abstract":"Markov chains can be used to generate samples whose distribution approximates a given target distribution. The quality of the samples of such Markov chains can be measured by the discrepancy between the empirical distribution of the samples and the target distribution. We prove upper bounds on this discrepancy under the assumption that the Markov chain is uniformly ergodic and the driver sequence is deterministic rather than independent $U(0,1)$ random variables. In particular, we show the existence of driver sequences for which the discrepancy of the Markov chain from the target distribution with respect to certain test sets converges with (almost) the usual Monte Carlo rate of $n^{-1/2}$.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/16-AAP1173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Markov chains can be used to generate samples whose distribution approximates a given target distribution. The quality of the samples of such Markov chains can be measured by the discrepancy between the empirical distribution of the samples and the target distribution. We prove upper bounds on this discrepancy under the assumption that the Markov chain is uniformly ergodic and the driver sequence is deterministic rather than independent $U(0,1)$ random variables. In particular, we show the existence of driver sequences for which the discrepancy of the Markov chain from the target distribution with respect to certain test sets converges with (almost) the usual Monte Carlo rate of $n^{-1/2}$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一致遍历马尔可夫链拟蒙特卡罗的差异界
马尔可夫链可以用来生成其分布近似于给定目标分布的样本。这种马尔可夫链的样本质量可以通过样本的经验分布与目标分布之间的差异来衡量。在假设马尔可夫链是一致遍历的并且驱动序列是确定的而不是独立的$U(0,1)$随机变量的情况下,证明了这种差异的上界。特别地,我们证明了驱动序列的存在性,对于这些驱动序列,目标分布的马尔可夫链对某些测试集的差异(几乎)以通常的蒙特卡罗速率n^{-1/2}$收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1