E. Ismail, M. Kenfouch, M. Dhlamini, S. Dube, M. Maaza
{"title":"Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract","authors":"E. Ismail, M. Kenfouch, M. Dhlamini, S. Dube, M. Maaza","doi":"10.4172/2324-8777.1000212","DOIUrl":null,"url":null,"abstract":"Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract \nThis contribution report on the bio-synthesis of Rhodium metallic nanoparticles (Rh NPs) synthesized for the 1st time by a completely green process using Aspalathus linearis natural plant extract as an effective bio-oxidizing/bio-reducing agent as well as a capping compound. Their morphological, structural and optical properties were investigated using various complementary surface/interface characterization techniques such as HR-TEM, HR-SEM, EDS, XRD, XPS, UV and ATR-FTIR spectroscopy. The results confirm the formation of quais - monodisperse spherical Rh NPs in the range of 0.8-1.6 nm.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"2 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract
This contribution report on the bio-synthesis of Rhodium metallic nanoparticles (Rh NPs) synthesized for the 1st time by a completely green process using Aspalathus linearis natural plant extract as an effective bio-oxidizing/bio-reducing agent as well as a capping compound. Their morphological, structural and optical properties were investigated using various complementary surface/interface characterization techniques such as HR-TEM, HR-SEM, EDS, XRD, XPS, UV and ATR-FTIR spectroscopy. The results confirm the formation of quais - monodisperse spherical Rh NPs in the range of 0.8-1.6 nm.