What do post-editors correct? A fine-grained analysis of SMT and NMT errors

Sergi Alvarez-Vidal, A. Oliver, Toni Badia
{"title":"What do post-editors correct? A fine-grained analysis of SMT and NMT errors","authors":"Sergi Alvarez-Vidal, A. Oliver, Toni Badia","doi":"10.5565/rev/tradumatica.286","DOIUrl":null,"url":null,"abstract":"The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.","PeriodicalId":42402,"journal":{"name":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tradumatica-Traduccio i Tecnologies de la Informacio i la Comunicacio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/tradumatica.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 2

Abstract

The recent improvements in neural MT (NMT) have driven a shift from statistical MT (SMT) to NMT. However, to assess the usefulness of MT models for post-editing (PE) and have a detailed insight of the output they produce, we need to analyse the most frequent errors and how they affect the task. We present a pilot study of a fine-grained analysis of MT errors based on post-editors corrections for an English to Spanish medical text translated with SMT and NMT. We use the MQM taxonomy to compare the two MT models and have a categorized classification of the errors produced. Even though results show a great variation among post-editors’ corrections, for this language combination fewer errors are corrected by post-editors in the NMT output. NMT also produces fewer accuracy errors and errors that are less critical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后期编辑要纠正什么?对SMT和NMT错误的细粒度分析
近年来神经机器翻译(NMT)的进步推动了统计机器翻译(SMT)向NMT的转变。然而,为了评估机器翻译模型对后期编辑(PE)的有用性,并详细了解它们产生的输出,我们需要分析最常见的错误以及它们如何影响任务。我们提出了一项基于后编辑更正的基于SMT和NMT翻译的英语到西班牙语医学文本的MT错误细粒度分析的试点研究。我们使用MQM分类法来比较两个MT模型,并对产生的错误进行分类。尽管结果显示后编辑的纠正差异很大,但对于这种语言组合,后编辑在NMT输出中纠正的错误较少。NMT还产生更少的精度误差和不太重要的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
50.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
La documentació aplicada a la traducció especialitzada i a la traducció literària Cercadors de recursos web especialitzats en Traducció Competencia informacional para la actividad traductora El lenguaje en la comunicación y recuperación de información El documento como dato, conocimiento e información
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1