{"title":"Motor Imagery EEG Signals Marginal Time Coherence Analysis for Brain-Computer Interface","authors":"Md. Sujan Ali, Jannatul Ferdous","doi":"10.14569/ijacsa.2023.0140888","DOIUrl":null,"url":null,"abstract":"—The synchronization of neural activity in the human brain has great significance for coordinating its various cognitive functions. It changes throughout time and in response to frequency. The activity is measured in terms of brain signals, like an electroencephalogram (EEG). The time-frequency (TF) synchronization among several EEG channels is measured in this research using an efficient approach. Most frequently, the windowed Fourier transforms-short-time Fourier transform (STFT), as well as wavelet transform (WT), and are used to measure the TF coherence. The information provided by these model-based methods in the TF domain is insufficient. The proposed synchro squeezing transform (SST)-based TF representation is a data-adaptive approach for resolving the problem of the traditional one. It enables more perfect estimation and better tracking of TF components. The SST generates a clearly defined TF depiction because of its data flexibility and frequency reassignment capabilities. Furthermore, a non-identical smoothing operator is used to smooth the TF coherence, which enhances the statistical consistency of neural synchronization. The experiment is run using both simulated and actual EEG data. The outcomes show that the suggested SST-dependent system performs significantly better than the previously mentioned traditional approaches. As a result, the coherences dependent on the suggested approach clearly distinguish between various forms of motor imagery movement. The TF coherence can be used to measure the interdependencies of neural activities.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
—The synchronization of neural activity in the human brain has great significance for coordinating its various cognitive functions. It changes throughout time and in response to frequency. The activity is measured in terms of brain signals, like an electroencephalogram (EEG). The time-frequency (TF) synchronization among several EEG channels is measured in this research using an efficient approach. Most frequently, the windowed Fourier transforms-short-time Fourier transform (STFT), as well as wavelet transform (WT), and are used to measure the TF coherence. The information provided by these model-based methods in the TF domain is insufficient. The proposed synchro squeezing transform (SST)-based TF representation is a data-adaptive approach for resolving the problem of the traditional one. It enables more perfect estimation and better tracking of TF components. The SST generates a clearly defined TF depiction because of its data flexibility and frequency reassignment capabilities. Furthermore, a non-identical smoothing operator is used to smooth the TF coherence, which enhances the statistical consistency of neural synchronization. The experiment is run using both simulated and actual EEG data. The outcomes show that the suggested SST-dependent system performs significantly better than the previously mentioned traditional approaches. As a result, the coherences dependent on the suggested approach clearly distinguish between various forms of motor imagery movement. The TF coherence can be used to measure the interdependencies of neural activities.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications