Waves: a model of collective learning

Lise-Marie Veillon, Gauvain Bourgne, H. Soldano
{"title":"Waves: a model of collective learning","authors":"Lise-Marie Veillon, Gauvain Bourgne, H. Soldano","doi":"10.1145/3106426.3106544","DOIUrl":null,"url":null,"abstract":"Collective learning considers how agents, in a community sharing a learning purpose, may benefit from exchanging hypotheses and observations to learn efficiently as a community as well as individuals. The community forms a communication network and each agent has access to observations. We address the question of a protocol, i.e. a set of agent's behaviours, which guarantees the hypotheses retained by the agents take into account all the observations in the community. We present and investigate the protocol WAVES which displays such a guarantee in a turn-based scenario: at the beginning of each turn, agents collect new observations and interact until they all reach this consistency guarantee. We investigate and experiment WAVES on various network topologies and various experimental parameters. We present results on learning efficiency, in terms of computation and communication costs, as well as results on learning quality, in terms of predictive accuracy for a given number of observations collected by the community.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3106544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Collective learning considers how agents, in a community sharing a learning purpose, may benefit from exchanging hypotheses and observations to learn efficiently as a community as well as individuals. The community forms a communication network and each agent has access to observations. We address the question of a protocol, i.e. a set of agent's behaviours, which guarantees the hypotheses retained by the agents take into account all the observations in the community. We present and investigate the protocol WAVES which displays such a guarantee in a turn-based scenario: at the beginning of each turn, agents collect new observations and interact until they all reach this consistency guarantee. We investigate and experiment WAVES on various network topologies and various experimental parameters. We present results on learning efficiency, in terms of computation and communication costs, as well as results on learning quality, in terms of predictive accuracy for a given number of observations collected by the community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪:一个集体学习的模型
集体学习考虑的是,在一个共享学习目标的社区中,作为一个社区和个人,如何通过交换假设和观察来有效地学习。社区形成了一个通信网络,每个代理都可以访问观察结果。我们解决了一个协议的问题,即一组代理的行为,它保证代理保留的假设考虑了社区中的所有观察结果。我们提出并研究了WAVES协议,它在基于回合的场景中显示了这样的保证:在每个回合的开始,代理收集新的观察结果并相互作用,直到它们都达到这种一致性保证。我们在各种网络拓扑和各种实验参数上研究和实验WAVES。我们在计算和通信成本方面展示了学习效率的结果,以及在社区收集的给定数量的观察结果的预测准确性方面展示了学习质量的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1