A new approach to performance optimization of mashups via data flow refactoring

Jie Liu, Jun Wei, Dan Ye, Tao Huang
{"title":"A new approach to performance optimization of mashups via data flow refactoring","authors":"Jie Liu, Jun Wei, Dan Ye, Tao Huang","doi":"10.1145/2020723.2020729","DOIUrl":null,"url":null,"abstract":"Mashup tools allow end users graphically build complex mashups using pipes to connect web data sources into a data flow. Because end users are of poor technical expertise, the designed data flows may be inefficient. This paper targets on enhancing the performance of mashups via automatically refactoring the structure of its data flows. First a set of operational semantics features are selected for annotating the operators in data flows and refactoring rules are defined to generate all candidate semantics equivalent data flows. Then a heuristic algorithm is described for accurately searching the data flow of minimal execution time by constructing a partially ordered set of data flows based on their cost estimation. This approach is applicable to general mashup data flows without knowing complete operational semantics of their operators and the efficiency improvement is demonstrated by experiments.","PeriodicalId":20631,"journal":{"name":"Proceedings of the 8th Asia-Pacific Symposium on Internetware","volume":"125 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2020723.2020729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mashup tools allow end users graphically build complex mashups using pipes to connect web data sources into a data flow. Because end users are of poor technical expertise, the designed data flows may be inefficient. This paper targets on enhancing the performance of mashups via automatically refactoring the structure of its data flows. First a set of operational semantics features are selected for annotating the operators in data flows and refactoring rules are defined to generate all candidate semantics equivalent data flows. Then a heuristic algorithm is described for accurately searching the data flow of minimal execution time by constructing a partially ordered set of data flows based on their cost estimation. This approach is applicable to general mashup data flows without knowing complete operational semantics of their operators and the efficiency improvement is demonstrated by experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数据流重构实现混搭性能优化的新方法
Mashup工具允许最终用户使用管道将web数据源连接到数据流中,以图形方式构建复杂的Mashup。由于最终用户的技术专长较差,因此设计的数据流可能效率低下。本文的目标是通过自动重构mashup的数据流结构来增强mashup的性能。首先选择一组操作语义特征用于标注数据流中的操作符,并定义重构规则以生成所有候选语义等效数据流。在此基础上,提出了一种启发式算法,通过构造部分有序的数据流集来精确搜索执行时间最短的数据流。该方法适用于一般的mashup数据流,无需了解其操作符的完整操作语义,并且通过实验证明了效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Internetware 2022: 13th Asia-Pacific Symposium on Internetware, Hohhot, China, June 11 - 12, 2022 Internetware'20: 12th Asia-Pacific Symposium on Internetware, Singapore, November 1-3, 2020 Internetware '19: The 11th Asia-Pacific Symposium on Internetware, Fukuoka, Japan, October 28-29, 2019 RepoLike: personal repositories recommendation in social coding communities Effa: a proM plugin for recovering event logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1