Hongxin Yang, Xue Luo, Bin Chen, Heping Xie, Li Huang, Qiangqiang Shi, Yuanzhi Zhang, Meng Ni
{"title":"A numerical investigation on indoor air ventilation design and aerosol transportation: a case study in a hospital hall","authors":"Hongxin Yang, Xue Luo, Bin Chen, Heping Xie, Li Huang, Qiangqiang Shi, Yuanzhi Zhang, Meng Ni","doi":"10.1177/00375497231194348","DOIUrl":null,"url":null,"abstract":"The transportation of indoor aerosol particles is closely related to the infection risk of various viruses. When the pandemic of COVID-19 is anticipated to coexist with human beings in the future, the design of airflow distribution in public buildings becomes more vital not only for thermal comfort but also for epidemic prevention through controlling indoor aerosol transportation. In this paper, the conditioning of indoor air in a hospital hall (Chongzhou Traditional Chinese Medicine Hospital in Chengdu, China) is case studied by numerically simulating the indoor thermal comfort and the aerosol transportation process analysis. Simulation results indicate that thermal comfort can be first achieved by appropriate air supply forms in summer. Under the combined operation of the nozzles, square diffusers, and the breathing plane, with an average velocity of 0.26 m/s, the average temperature, and the average air age are 23.43°C and 949.59 s, respectively. Second, the arrangement of air-exhaust outlets in this hospital hall is also redesigned and simulated with three new schemes of outlets design, of which the floor exhaust scheme is optimal with the fastest aerosol discharge speed (thus the strongest pollutant discharge capacity), i.e., 62% of aerosol particles discharged in 30 s and 99% of particles discharged in 150 s. This study makes a successful attempt to optimize indoor air ventilation for preventing airborne transmission of viruses, e.g., COVID-19, offering a feasible scheme for the air distribution design in densely populated areas such as hospital halls.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231194348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transportation of indoor aerosol particles is closely related to the infection risk of various viruses. When the pandemic of COVID-19 is anticipated to coexist with human beings in the future, the design of airflow distribution in public buildings becomes more vital not only for thermal comfort but also for epidemic prevention through controlling indoor aerosol transportation. In this paper, the conditioning of indoor air in a hospital hall (Chongzhou Traditional Chinese Medicine Hospital in Chengdu, China) is case studied by numerically simulating the indoor thermal comfort and the aerosol transportation process analysis. Simulation results indicate that thermal comfort can be first achieved by appropriate air supply forms in summer. Under the combined operation of the nozzles, square diffusers, and the breathing plane, with an average velocity of 0.26 m/s, the average temperature, and the average air age are 23.43°C and 949.59 s, respectively. Second, the arrangement of air-exhaust outlets in this hospital hall is also redesigned and simulated with three new schemes of outlets design, of which the floor exhaust scheme is optimal with the fastest aerosol discharge speed (thus the strongest pollutant discharge capacity), i.e., 62% of aerosol particles discharged in 30 s and 99% of particles discharged in 150 s. This study makes a successful attempt to optimize indoor air ventilation for preventing airborne transmission of viruses, e.g., COVID-19, offering a feasible scheme for the air distribution design in densely populated areas such as hospital halls.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.