Comparative Study of the Wind Codes: An Application to Forty-Six Storied Wall-Frame Structure

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Engineer-Journal of the Institution of Engineers Sri Lanka Pub Date : 2021-12-30 DOI:10.4038/engineer.v54i4.7469
B. Kiriparan, J. Jayasinghe, U. I. Dissanayake
{"title":"Comparative Study of the Wind Codes: An Application to Forty-Six Storied Wall-Frame Structure","authors":"B. Kiriparan, J. Jayasinghe, U. I. Dissanayake","doi":"10.4038/engineer.v54i4.7469","DOIUrl":null,"url":null,"abstract":": Wind is a random movement of air particles in both time and space, which produces very complicated dynamic loading scenario on flexible structures like tall buildings. Modern tall buildings are becoming more slender, flexible, lightweight and irregular in shape due to revolution of associated technologies. Consequently, analysis of tall buildings considering complicated nature of wind loading and dynamic response of the structural system is an important role in design of tall buildings. Wind tunnel test is the most reliable tool for the estimation of dynamic wind loading on tall buildings. However, due to the cost and time involved, wind design codes are generally used during the preliminary design stage. Thus, understanding the background of dynamic wind loading and procedures adopted in wind design standards to represent the dynamic effects is vital to arrive at an efficient, safe and economical structural system during the preliminary design stage. This paper presents an overview on background of dynamic wind loadings and provisions of four international wind codes frequently referred to in Sri Lanka, British Standard (BS), European Standard (BS EN), Australian Standard (AS/NZS) and Standard of Architectural Institute of Japan (AIJ). Further, the concept of equivalent static load derived based on the “gust-factor” method adopted in most of the international wind design codes is discussed. At the end, a forty-six storied wall-frame structure was used as the numerical example for the explanation of dynamic wind loading and its influence on the structural design.","PeriodicalId":42812,"journal":{"name":"Engineer-Journal of the Institution of Engineers Sri Lanka","volume":"228 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineer-Journal of the Institution of Engineers Sri Lanka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/engineer.v54i4.7469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

: Wind is a random movement of air particles in both time and space, which produces very complicated dynamic loading scenario on flexible structures like tall buildings. Modern tall buildings are becoming more slender, flexible, lightweight and irregular in shape due to revolution of associated technologies. Consequently, analysis of tall buildings considering complicated nature of wind loading and dynamic response of the structural system is an important role in design of tall buildings. Wind tunnel test is the most reliable tool for the estimation of dynamic wind loading on tall buildings. However, due to the cost and time involved, wind design codes are generally used during the preliminary design stage. Thus, understanding the background of dynamic wind loading and procedures adopted in wind design standards to represent the dynamic effects is vital to arrive at an efficient, safe and economical structural system during the preliminary design stage. This paper presents an overview on background of dynamic wind loadings and provisions of four international wind codes frequently referred to in Sri Lanka, British Standard (BS), European Standard (BS EN), Australian Standard (AS/NZS) and Standard of Architectural Institute of Japan (AIJ). Further, the concept of equivalent static load derived based on the “gust-factor” method adopted in most of the international wind design codes is discussed. At the end, a forty-six storied wall-frame structure was used as the numerical example for the explanation of dynamic wind loading and its influence on the structural design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
46层框架-剪力墙结构的风规范比较研究
风是空气粒子在时间和空间上的随机运动,它会对高楼等柔性结构产生非常复杂的动载荷场景。由于相关技术的革命,现代高层建筑正变得更加修长、灵活、轻便和不规则。因此,考虑风荷载和结构体系动力响应复杂性的高层建筑分析在高层建筑设计中具有重要作用。风洞试验是估算高层建筑动风荷载最可靠的工具。然而,由于成本和时间的原因,通常在初步设计阶段使用风力设计规范。因此,了解动力风荷载的背景和风设计标准中采用的程序来表示动力效应对于在初步设计阶段获得高效、安全和经济的结构体系至关重要。本文概述了动态风荷载的背景,以及斯里兰卡常用的四个国际风规范、英国标准(BS)、欧洲标准(BS EN)、澳大利亚标准(AS/NZS)和日本建筑学会标准(AIJ)的规定。在此基础上,讨论了基于“阵风因子”法推导出的等效静荷载的概念。最后,以46层框架墙结构为算例,说明了动力风荷载及其对结构设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
38
期刊最新文献
From the Editor… Review on the Estimation of Static Deformability Modulus of Rocks and their adoptability in Different Rock Masses Estimation Criteria for Static Rock Mass Deformability Modulus for Rock-Socket Design in Metamorphic Rock Masses Exploring Flood Susceptibility Mapping Using ArcGIS Techniques Integrated with Analytical Hierarchy Process under Multi-Criteria Decision Analysis in Kanakarayan Aru River Basin, Sri Lanka Lightning Protection of Stupas in Sri Lanka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1