{"title":"Adaptive Collaboration Based on the E-CARGO Model","authors":"Haibin Zhu, Ming Hou, Mengchu Zhou","doi":"10.4018/jats.2012010104","DOIUrl":null,"url":null,"abstract":"Adaptive Collaboration (AC) is essential for maintaining optimal team performance on collaborative tasks. However, little research has discussed AC in multi-agent systems. This paper introduces AC within the context of solving real-world team performance problems using computer-based algorithms. Based on the authors’ previous work on the Environment-Class, Agent, Role, Group, and Object (E-CARGO) model, a theoretical foundation for AC using a simplified model of role-based collaboration (RBC) is proposed. Several parameters that affect team performance are defined and integrated into a theorem, which showed that dynamic role assignment yields better performance than static role assignment. The benefits of implementing AC are further proven by simulating a “future battlefield” of remotely-controlled robotic vehicles; in this scenario, team performance clearly benefits from shifting vehicles (or roles) using a single controller. Related research is also discussed for future studies.","PeriodicalId":93648,"journal":{"name":"International journal of agent technologies and systems","volume":"3 1","pages":"59-76"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of agent technologies and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jats.2012010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Adaptive Collaboration (AC) is essential for maintaining optimal team performance on collaborative tasks. However, little research has discussed AC in multi-agent systems. This paper introduces AC within the context of solving real-world team performance problems using computer-based algorithms. Based on the authors’ previous work on the Environment-Class, Agent, Role, Group, and Object (E-CARGO) model, a theoretical foundation for AC using a simplified model of role-based collaboration (RBC) is proposed. Several parameters that affect team performance are defined and integrated into a theorem, which showed that dynamic role assignment yields better performance than static role assignment. The benefits of implementing AC are further proven by simulating a “future battlefield” of remotely-controlled robotic vehicles; in this scenario, team performance clearly benefits from shifting vehicles (or roles) using a single controller. Related research is also discussed for future studies.