A. Paté, N. Côté, C. Croënne, J. Vasseur, A. Hladky-Hennion
{"title":"Perception of loudness changes induced by a phononic crystal in specific frequency bands","authors":"A. Paté, N. Côté, C. Croënne, J. Vasseur, A. Hladky-Hennion","doi":"10.1051/aacus/2022037","DOIUrl":null,"url":null,"abstract":"To study the influence of classical phononic crystal (PC) structures on the acoustical characteristics of a sound source, a combined acoustics/perceptual analysis is conducted on a PC specially designed to exhibit several spectral and wave vector properties in different audible frequency ranges. The properties, confirmed by both numerical calculations and experiments, consist in both partial and absolute band gaps, as well as a negative refraction band. A psychoacoustic feature, namely the loudness in third-octave bands, is estimated from numerical simulations of the acoustic field behind the crystal. Additional perceptual tests are conducted to evaluate the efficiency of the PC slab. In the frequency range of the band gaps, sound stimuli filtered by the PC’s impulse response are perceived as softer than stimuli resulting from a free-field propagation (FF), they also are perceived as equally (or close to equally) loud than sounds attenuated by a free-standing rigid wall (FS). In the frequency range of the focalization (negative refraction), PC sound stimuli sound louder than both FS and FF sound stimuli. The possibility of designing an efficient sound barrier based on the considered PC is finally discussed.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022037","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To study the influence of classical phononic crystal (PC) structures on the acoustical characteristics of a sound source, a combined acoustics/perceptual analysis is conducted on a PC specially designed to exhibit several spectral and wave vector properties in different audible frequency ranges. The properties, confirmed by both numerical calculations and experiments, consist in both partial and absolute band gaps, as well as a negative refraction band. A psychoacoustic feature, namely the loudness in third-octave bands, is estimated from numerical simulations of the acoustic field behind the crystal. Additional perceptual tests are conducted to evaluate the efficiency of the PC slab. In the frequency range of the band gaps, sound stimuli filtered by the PC’s impulse response are perceived as softer than stimuli resulting from a free-field propagation (FF), they also are perceived as equally (or close to equally) loud than sounds attenuated by a free-standing rigid wall (FS). In the frequency range of the focalization (negative refraction), PC sound stimuli sound louder than both FS and FF sound stimuli. The possibility of designing an efficient sound barrier based on the considered PC is finally discussed.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.