A. Merlano, E. Albiter, M. Valenzuela, L. Hoyos, Á. Salazar
{"title":"Flower-like and nanorods ZnO deposited on rGO as efficient photocatalysts for removal of polychlorinated biphenyls (PCBs)","authors":"A. Merlano, E. Albiter, M. Valenzuela, L. Hoyos, Á. Salazar","doi":"10.1080/20550324.2023.2168938","DOIUrl":null,"url":null,"abstract":"Abstract PCBs were used for several decades as coolants, lubricants in transformers, plasticizers, and dielectric fluids, being highly carcinogenic and representing a severe environmental problem in soil and water. Pure and modified TiO2 has been the most studied photocatalyst looking to degrade PCBs into less toxic products. Lately, ZnO-graphene composites have played an essential role in the photocatalytic degradation of various toxic organic compounds. In this work, ZnO nanostructures were coupled with reduced graphene oxide (ZnO-rGO) via a one-pot microwave-assisted hydrothermal route. As a result, the composites exhibited improved photocatalytic performance for PCBs degradation compared to ZnO nanoparticles. Thus, this research provides an in-situ method to grow different morphologies of ZnO on rGO. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"23 1","pages":"204 - 214"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2023.2168938","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract PCBs were used for several decades as coolants, lubricants in transformers, plasticizers, and dielectric fluids, being highly carcinogenic and representing a severe environmental problem in soil and water. Pure and modified TiO2 has been the most studied photocatalyst looking to degrade PCBs into less toxic products. Lately, ZnO-graphene composites have played an essential role in the photocatalytic degradation of various toxic organic compounds. In this work, ZnO nanostructures were coupled with reduced graphene oxide (ZnO-rGO) via a one-pot microwave-assisted hydrothermal route. As a result, the composites exhibited improved photocatalytic performance for PCBs degradation compared to ZnO nanoparticles. Thus, this research provides an in-situ method to grow different morphologies of ZnO on rGO. Graphical Abstract