Guizhen Yu, Han Li, Yunpeng Wang, Peng Chen, Bin Zhou
{"title":"A review on cooperative perception and control supported infrastructure-vehicle system","authors":"Guizhen Yu, Han Li, Yunpeng Wang, Peng Chen, Bin Zhou","doi":"10.1016/j.geits.2022.100023","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of connected autonomous vehicles (CAVs), both road infrastructure and transport are experiencing a profound transformation. In recent years, the cooperative perception and control supported infrastructure-vehicle system (IVS) attracted increasing attention in the field of intelligent transportation systems (ITS). The perception information of surrounding objects can be obtained by various types of sensors or communication networks. Control commands generated by CAVs or infrastructure can be executed promptly and accurately to improve the overall performance of the transportation system in terms of safety, efficiency, comfort and energy saving. This study presents a comprehensive review of the research progress achieved upon cooperative perception and control supported IVS over the past decade. By focusing on the essential interactions between infrastructure and CAVs and between CAVs, the infrastructure-vehicle cooperative perception and control methods are summarized and analyzed. Furthermore, the mining site as a closed scenario was used to show the current application of IVS. Finally, the existing issues of the cooperative perception and control technology implementation are discussed, and the recommendation for future research directions are proposed.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"1 3","pages":"Article 100023"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153722000238/pdfft?md5=804e6ad0e15997aa273f6767a1b09d6d&pid=1-s2.0-S2773153722000238-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153722000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the rapid development of connected autonomous vehicles (CAVs), both road infrastructure and transport are experiencing a profound transformation. In recent years, the cooperative perception and control supported infrastructure-vehicle system (IVS) attracted increasing attention in the field of intelligent transportation systems (ITS). The perception information of surrounding objects can be obtained by various types of sensors or communication networks. Control commands generated by CAVs or infrastructure can be executed promptly and accurately to improve the overall performance of the transportation system in terms of safety, efficiency, comfort and energy saving. This study presents a comprehensive review of the research progress achieved upon cooperative perception and control supported IVS over the past decade. By focusing on the essential interactions between infrastructure and CAVs and between CAVs, the infrastructure-vehicle cooperative perception and control methods are summarized and analyzed. Furthermore, the mining site as a closed scenario was used to show the current application of IVS. Finally, the existing issues of the cooperative perception and control technology implementation are discussed, and the recommendation for future research directions are proposed.