Mathematical Morphological Filters and Applications in Seismic Data Denoising

Z. Liu, D. Wheaton, V. Tyagi, B. Wang
{"title":"Mathematical Morphological Filters and Applications in Seismic Data Denoising","authors":"Z. Liu, D. Wheaton, V. Tyagi, B. Wang","doi":"10.3997/2214-4609.201900849","DOIUrl":null,"url":null,"abstract":"Summary Mathematical morphological filtering (MMF) is a powerful tool for image processing based on the shape of the structure element (SE). It was introduced into seismic data processing to suppress noise and enhance signal quality. We explain the basic mathematic morphology concepts with set theory and define the basic and advanced morphological operations in seismic data processing. Unlike conventional seismic filtering techniques, MMF is a nonlinear operator so that it can more effectively isolate and attenuate seismic noise based on their shape differences from the signal. We apply different types of morphological filter on field (and various stages of processed) data to demonstrate their effectiveness for suppression of both coherent and incoherent noise and results in an improvement of signal to noise ratio.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary Mathematical morphological filtering (MMF) is a powerful tool for image processing based on the shape of the structure element (SE). It was introduced into seismic data processing to suppress noise and enhance signal quality. We explain the basic mathematic morphology concepts with set theory and define the basic and advanced morphological operations in seismic data processing. Unlike conventional seismic filtering techniques, MMF is a nonlinear operator so that it can more effectively isolate and attenuate seismic noise based on their shape differences from the signal. We apply different types of morphological filter on field (and various stages of processed) data to demonstrate their effectiveness for suppression of both coherent and incoherent noise and results in an improvement of signal to noise ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数学形态滤波器及其在地震数据去噪中的应用
数学形态滤波(MMF)是一种基于结构元素(SE)形状的图像处理工具。将其引入地震数据处理中,以抑制噪声,提高信号质量。用集合理论解释了数学形态学的基本概念,定义了地震数据处理中形态学的基本操作和高级操作。与传统的地震滤波技术不同,MMF是一种非线性算子,因此它可以根据地震噪声与信号的形状差异更有效地隔离和衰减地震噪声。我们将不同类型的形态学滤波器应用于现场(以及处理的各个阶段)数据,以证明它们对抑制相干和非相干噪声的有效性,并导致信噪比的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1