Anaplerotic flux into the Calvin–Benson cycle: hydrogen isotope evidence for in vivo occurrence in C3 metabolism

T. Wieloch, A. Augusti, J. Schleucher
{"title":"Anaplerotic flux into the Calvin–Benson cycle: hydrogen isotope evidence for in vivo occurrence in C3 metabolism","authors":"T. Wieloch, A. Augusti, J. Schleucher","doi":"10.1101/2021.07.30.454453","DOIUrl":null,"url":null,"abstract":"- As the central carbon uptake pathway in photosynthetic cells, the Calvin-Benson cycle is among the most important biochemical cycles for life on Earth. A carbon flux of anaplerotic origin (i.e., through the chloroplast-localised oxidative branch of the pentose phosphate pathway) into the Calvin-Benson cycle was proposed recently. - Here, we measured intramolecular deuterium abundances in leaf starch of Helianthus annuus grown at varying ambient CO2 concentrations, Ca. Additionally, we modelled deuterium fractionations expected for the anaplerotic pathway and compared modelled with measured fractionations. - We report deuterium fractionation signals at H1 and H2 of starch glucose. Below a Ca change point, these signals increase with decreasing Ca consistent with modelled fractionations by anaplerotic flux. Under standard conditions (Ca=450 ppm corresponding to intercellular CO2 concentrations, Ci, of 328 ppm), we estimate negligible anaplerotic flux. At Ca=180 ppm (Ci=140 ppm), more than 10% of the glucose 6-phosphate entering the starch biosynthesis pathway is diverted into the anaplerotic pathway. - In conclusion, we report evidence consistent with anaplerotic carbon flux into the Calvin-Benson cycle in vivo. We propose the flux may help to (i) maintain high levels of ribulose 1,5-bisphosphate under source-limited growth conditions to facilitate photorespiratory nitrogen assimilation required to build-up source strength and (ii) counteract oxidative stress.","PeriodicalId":23025,"journal":{"name":"The New phytologist","volume":"27 1","pages":"405 - 411"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New phytologist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.07.30.454453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

- As the central carbon uptake pathway in photosynthetic cells, the Calvin-Benson cycle is among the most important biochemical cycles for life on Earth. A carbon flux of anaplerotic origin (i.e., through the chloroplast-localised oxidative branch of the pentose phosphate pathway) into the Calvin-Benson cycle was proposed recently. - Here, we measured intramolecular deuterium abundances in leaf starch of Helianthus annuus grown at varying ambient CO2 concentrations, Ca. Additionally, we modelled deuterium fractionations expected for the anaplerotic pathway and compared modelled with measured fractionations. - We report deuterium fractionation signals at H1 and H2 of starch glucose. Below a Ca change point, these signals increase with decreasing Ca consistent with modelled fractionations by anaplerotic flux. Under standard conditions (Ca=450 ppm corresponding to intercellular CO2 concentrations, Ci, of 328 ppm), we estimate negligible anaplerotic flux. At Ca=180 ppm (Ci=140 ppm), more than 10% of the glucose 6-phosphate entering the starch biosynthesis pathway is diverted into the anaplerotic pathway. - In conclusion, we report evidence consistent with anaplerotic carbon flux into the Calvin-Benson cycle in vivo. We propose the flux may help to (i) maintain high levels of ribulose 1,5-bisphosphate under source-limited growth conditions to facilitate photorespiratory nitrogen assimilation required to build-up source strength and (ii) counteract oxidative stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进入卡尔文-本森循环的复变通量:C3代谢中体内发生的氢同位素证据
-卡尔文-本森循环作为光合细胞的中心碳吸收途径,是地球上生命最重要的生化循环之一。最近提出了一种碳通量的来源(即通过叶绿体局部氧化分支的戊糖磷酸途径)进入卡尔文-本森循环。在这里,我们测量了在不同环境CO2浓度下生长的向日葵叶片淀粉中的分子内氘丰度。此外,我们模拟了倒转途径中预期的氘分异,并将模型与实际分异进行了比较。-我们报道了淀粉葡萄糖H1和H2处的氘分馏信号。在Ca变化点以下,这些信号随着Ca的降低而增加,这与由复冲通量模拟的分值一致。在标准条件下(Ca=450 ppm,对应于细胞间CO2浓度,Ci为328 ppm),我们估计折返通量可以忽略不计。当Ca=180 ppm (Ci=140 ppm)时,超过10%进入淀粉生物合成途径的葡萄糖6-磷酸被转移到退变途径。总之,我们报告的证据与体内卡尔文-本森循环的碳通量倒转一致。我们认为这种通量可能有助于(i)在源受限的生长条件下维持高水平的1,5-二磷酸核酮糖,以促进光呼吸氮同化,从而增强源强度;(ii)抵消氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages Revisiting Ancient Polyploidy in Leptosporangiate Ferns Teasing apart the joint effect of demography and natural selection in the birth of a contact zone Arbuscular mycorrhizal fungi influence host infection during epidemics in a wild plant pathosystem Tomato CRABS CLAW paralogues interact with chromatin remodelling factors to mediate carpel development and floral determinacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1