Potential of Pseudarthrobacter chlorophenolicus BF2P4-5 as a Biofertilizer for the Growth Promotion of Tomato Plants

Muazu Issifu, Edinah K. Songoro, J. Onguso, E. Ateka, V. Ngumi
{"title":"Potential of Pseudarthrobacter chlorophenolicus BF2P4-5 as a Biofertilizer for the Growth Promotion of Tomato Plants","authors":"Muazu Issifu, Edinah K. Songoro, J. Onguso, E. Ateka, V. Ngumi","doi":"10.3390/bacteria1040015","DOIUrl":null,"url":null,"abstract":"BF2P4-5 was isolated from the rhizosphere soil of tomato plants, and its potential to promote plant growth was investigated in tomato plants. An in vitro test revealed that the strain could fix nitrogen, solubilize phosphate and potassium, and synthesize indole acetic acid. The bacterial strain was identified and characterized as a kind of Pseudarthrobacter chlorophenolicus based on the analysis of culture characteristics, physiological and biochemical characteristics, and 16S rRNA gene sequence (GenBank accession number OP135548.1). pH 7.0, 15% NaCl, and 35 °C temperature were ideal for optimal strain growth under culture conditions. Tomato plants grown on a cocopeat substrate were inoculated with BF2P4-5 suspension (OD600 2.0). Positive control plants were inoculated with Nitrogen Phosphorus Potassium (NPK) fertilizer. This BF2P4-5 strain and NPK treatments were complemented with a negative control, in which only tap water was applied to tomato roots, thus, establishing three distinct treatment modalities with five replications each. Two months of greenhouse trials of inoculated tomato plants improved growth parameters. Interestingly, in most of the growth metrics evaluated, tomato plants treated with strain BF2P4-5 showed little to no variation with NPK fertilizer treatment, including plant height, stem length, girth, leaf number per plant, and chlorophyll content, when compared to uninoculated plants. Furthermore, the conditions for the cocopeat plants, including pH, EC, and moisture, were within acceptable limits. Furthermore, inoculation with BF2P4-5 increased the nitrogen, phosphorus, and potassium content available in the cocopeat medium. The results showed that the strain exhibited traits for the promotion of plant growth and could be deployed as an eco-friendly microbial biofertilizer for tomatoes and probably other essential crops.","PeriodicalId":18020,"journal":{"name":"Lactic Acid Bacteria","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lactic Acid Bacteria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bacteria1040015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

BF2P4-5 was isolated from the rhizosphere soil of tomato plants, and its potential to promote plant growth was investigated in tomato plants. An in vitro test revealed that the strain could fix nitrogen, solubilize phosphate and potassium, and synthesize indole acetic acid. The bacterial strain was identified and characterized as a kind of Pseudarthrobacter chlorophenolicus based on the analysis of culture characteristics, physiological and biochemical characteristics, and 16S rRNA gene sequence (GenBank accession number OP135548.1). pH 7.0, 15% NaCl, and 35 °C temperature were ideal for optimal strain growth under culture conditions. Tomato plants grown on a cocopeat substrate were inoculated with BF2P4-5 suspension (OD600 2.0). Positive control plants were inoculated with Nitrogen Phosphorus Potassium (NPK) fertilizer. This BF2P4-5 strain and NPK treatments were complemented with a negative control, in which only tap water was applied to tomato roots, thus, establishing three distinct treatment modalities with five replications each. Two months of greenhouse trials of inoculated tomato plants improved growth parameters. Interestingly, in most of the growth metrics evaluated, tomato plants treated with strain BF2P4-5 showed little to no variation with NPK fertilizer treatment, including plant height, stem length, girth, leaf number per plant, and chlorophyll content, when compared to uninoculated plants. Furthermore, the conditions for the cocopeat plants, including pH, EC, and moisture, were within acceptable limits. Furthermore, inoculation with BF2P4-5 increased the nitrogen, phosphorus, and potassium content available in the cocopeat medium. The results showed that the strain exhibited traits for the promotion of plant growth and could be deployed as an eco-friendly microbial biofertilizer for tomatoes and probably other essential crops.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿酚假节杆菌BF2P4-5作为促进番茄生长的生物肥料的潜力
从番茄根际土壤中分离得到BF2P4-5,并对其在番茄植株上的促生长潜力进行了研究。体外实验表明,该菌具有固氮、溶磷、溶钾、合成吲哚乙酸的能力。根据培养特性、生理生化特性及16S rRNA基因序列分析(GenBank登录号OP135548.1),鉴定该菌株为绿酚假节杆菌。在培养条件下,pH 7.0、15% NaCl和35℃温度是菌株生长的理想条件。用BF2P4-5悬浮液(OD600 2.0)接种番茄植株。阳性对照植株接种氮磷钾(NPK)肥。以BF2P4-5菌株和NPK处理为补充,建立了3种不同的处理方式,每种处理5个重复。接种番茄植株两个月的温室试验改善了其生长参数。有趣的是,在大多数生长指标评估中,与未接种的植株相比,BF2P4-5菌株处理的番茄植株的株高、茎长、周长、单株叶数和叶绿素含量几乎没有变化。此外,椰子树的条件,包括pH、EC和湿度,都在可接受的范围内。此外,接种BF2P4-5可提高椰子培养基中速效氮、磷和钾的含量。结果表明,该菌株具有促进植物生长的特性,可作为番茄和其他重要作物的生态友好型微生物肥料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Curing Agents in the Adaptive Response of the Bioprotective Latilactobacillus curvatus CRL 705 from a Physiologic and Proteomic Perspective Enhancing Manganese Availability for Plants through Microbial Potential: A Sustainable Approach for Improving Soil Health and Food Security Geochemical and Microbiological Composition of Soils and Tailings Surrounding the Komsomolsk Tailings, Kemerovo Region, Russia Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production The Isolation, Screening, and Characterization of Polyhydroxyalkanoate-Producing Bacteria from Hypersaline Lakes in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1