Synthesized Feature based Few-Shot Class-Incremental Learning on a Mixture of Subspaces

A. Cheraghian, Shafin Rahman, Sameera Ramasinghe, Pengfei Fang, Christian Simon, L. Petersson, Mehrtash Harandi
{"title":"Synthesized Feature based Few-Shot Class-Incremental Learning on a Mixture of Subspaces","authors":"A. Cheraghian, Shafin Rahman, Sameera Ramasinghe, Pengfei Fang, Christian Simon, L. Petersson, Mehrtash Harandi","doi":"10.1109/ICCV48922.2021.00854","DOIUrl":null,"url":null,"abstract":"Few-shot class incremental learning (FSCIL) aims to incrementally add sets of novel classes to a well-trained base model in multiple training sessions with the restriction that only a few novel instances are available per class. While learning novel classes, FSCIL methods gradually forget base (old) class training and overfit to a few novel class samples. Existing approaches have addressed this problem by computing the class prototypes from the visual or semantic word vector domain. In this paper, we propose addressing this problem using a mixture of subspaces. Subspaces define the cluster structure of the visual domain and help to describe the visual and semantic domain considering the overall distribution of the data. Additionally, we propose to employ a variational autoencoder (VAE) to generate synthesized visual samples for augmenting pseudo-feature while learning novel classes incrementally. The combined effect of the mixture of subspaces and synthesized features reduces the forgetting and overfitting problem of FSCIL. Extensive experiments on three image classification datasets show that our proposed method achieves competitive results compared to state-of-the-art methods.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"3 1","pages":"8641-8650"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Few-shot class incremental learning (FSCIL) aims to incrementally add sets of novel classes to a well-trained base model in multiple training sessions with the restriction that only a few novel instances are available per class. While learning novel classes, FSCIL methods gradually forget base (old) class training and overfit to a few novel class samples. Existing approaches have addressed this problem by computing the class prototypes from the visual or semantic word vector domain. In this paper, we propose addressing this problem using a mixture of subspaces. Subspaces define the cluster structure of the visual domain and help to describe the visual and semantic domain considering the overall distribution of the data. Additionally, we propose to employ a variational autoencoder (VAE) to generate synthesized visual samples for augmenting pseudo-feature while learning novel classes incrementally. The combined effect of the mixture of subspaces and synthesized features reduces the forgetting and overfitting problem of FSCIL. Extensive experiments on three image classification datasets show that our proposed method achieves competitive results compared to state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合子空间上基于合成特征的少镜头类增量学习
few -shot class incremental learning (FSCIL)的目的是在多个训练课程中,在每个类只有几个新实例可用的限制下,逐步将新类集添加到训练良好的基础模型中。在学习新类的过程中,FSCIL方法逐渐忘记了基(旧)类训练,并对少数新类样本进行过拟合。现有的方法通过从视觉或语义词向量域计算类原型来解决这个问题。在本文中,我们建议使用混合子空间来解决这个问题。子空间定义了视觉域的聚类结构,并根据数据的整体分布来描述视觉域和语义域。此外,我们建议使用变分自编码器(VAE)在增量学习新类的同时生成用于增强伪特征的合成视觉样本。混合子空间和综合特征的联合作用减少了FSCIL的遗忘和过拟合问题。在三个图像分类数据集上的大量实验表明,与现有的方法相比,我们提出的方法取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1