Gogwon Choe, Y. Lim, Younghyun Kim, Go-Gi Lee, Yong‐Tae Kim
{"title":"Simplified solvent extraction process for high-purity Ni/Co mixed solution for lithium–ion batteries","authors":"Gogwon Choe, Y. Lim, Younghyun Kim, Go-Gi Lee, Yong‐Tae Kim","doi":"10.1080/01496395.2023.2232094","DOIUrl":null,"url":null,"abstract":"ABSTRACT The demands for Ni-based raw materials increase as Ni–Co–Mn ternary cathode materials become the main axis of the battery industry. Conventional hydrometallurgical process to produce raw materials from Ni ore for battery application is as follows: (i) leaching of metal ions by acid, (ii) solvent extraction process to extract target metals, and (iii) crystallization process to produce final single-metal compound as powder products. The conventional solvent extraction process is a three-circuit process comprising impurity removal, Co extraction, and Ni extraction circuits. Unlike conventional process, in this work, we suggest a simplified two-circuit process to simultaneously extract Ni and Co to produce Ni/Co mixed solution for cathode material precursor production. Accordingly, the efficiency of site utilization can be maximized by reducing the investment cost for the manufacturing process and downsizing mixer-settler facilities. Further, eco-friendly effects such as reducing the consumption of titrants and cutting down the process costs and wastewater discharge can be realized.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"33 1","pages":"2115 - 2122"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2232094","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The demands for Ni-based raw materials increase as Ni–Co–Mn ternary cathode materials become the main axis of the battery industry. Conventional hydrometallurgical process to produce raw materials from Ni ore for battery application is as follows: (i) leaching of metal ions by acid, (ii) solvent extraction process to extract target metals, and (iii) crystallization process to produce final single-metal compound as powder products. The conventional solvent extraction process is a three-circuit process comprising impurity removal, Co extraction, and Ni extraction circuits. Unlike conventional process, in this work, we suggest a simplified two-circuit process to simultaneously extract Ni and Co to produce Ni/Co mixed solution for cathode material precursor production. Accordingly, the efficiency of site utilization can be maximized by reducing the investment cost for the manufacturing process and downsizing mixer-settler facilities. Further, eco-friendly effects such as reducing the consumption of titrants and cutting down the process costs and wastewater discharge can be realized.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.