Zihe Zhang , Qifan Nie , Jun Liu , Alex Hainen , Naima Islam , Chenxuan Yang
{"title":"Machine learning based real-time prediction of freeway crash risk using crowdsourced probe vehicle data","authors":"Zihe Zhang , Qifan Nie , Jun Liu , Alex Hainen , Naima Islam , Chenxuan Yang","doi":"10.1080/15472450.2022.2106564","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time prediction of crash risk can support traffic incident management by generating critical information for practitioners to allocate resources for responding to anticipated traffic crashes proactively. Unlike previous studies using archived traffic data covering a limited highway environment such as a segment or corridor, this study uses a statewide live traffic database from HERE to develop real-time traffic crash prediction models. This database provides crowdsourced probe vehicle data that are high-resolution real-time traffic speed for the entire freeway network (nearly 2,000 miles) in Alabama. This study aims to use machine learning models to predict crash risk on freeways according to pre-crash traffic dynamics (e.g., mean speed, speed reduction) along with static freeway attributes. Traffic speed characteristics were extracted from the HERE database for both pre-crash and crash-free traffic conditions. Random Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) were developed and compared. Separate models were estimated for three major crash types: single-vehicle, rear-end, and sideswipe crashes. The model prediction accuracy indicated that the RF models outperform other models. Models for rear-end crashes are found to have greater accuracy than other models, which implies that rear-end crashes have a significant relationship with pre-crash traffic dynamics and are more predictable. The traffic speed factors that are ranked high in terms of feature importance are the speed variance and speed reduction prior to crashes. According to partial dependence plots, the rear-end crash risk is positively related to the speed variance and speed reductions. More results are discussed in the paper.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 1","pages":"Pages 84-102"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4
Abstract
Real-time prediction of crash risk can support traffic incident management by generating critical information for practitioners to allocate resources for responding to anticipated traffic crashes proactively. Unlike previous studies using archived traffic data covering a limited highway environment such as a segment or corridor, this study uses a statewide live traffic database from HERE to develop real-time traffic crash prediction models. This database provides crowdsourced probe vehicle data that are high-resolution real-time traffic speed for the entire freeway network (nearly 2,000 miles) in Alabama. This study aims to use machine learning models to predict crash risk on freeways according to pre-crash traffic dynamics (e.g., mean speed, speed reduction) along with static freeway attributes. Traffic speed characteristics were extracted from the HERE database for both pre-crash and crash-free traffic conditions. Random Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) were developed and compared. Separate models were estimated for three major crash types: single-vehicle, rear-end, and sideswipe crashes. The model prediction accuracy indicated that the RF models outperform other models. Models for rear-end crashes are found to have greater accuracy than other models, which implies that rear-end crashes have a significant relationship with pre-crash traffic dynamics and are more predictable. The traffic speed factors that are ranked high in terms of feature importance are the speed variance and speed reduction prior to crashes. According to partial dependence plots, the rear-end crash risk is positively related to the speed variance and speed reductions. More results are discussed in the paper.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.