{"title":"Design for a FET based 1 MHz, 10 kV pulse generator","authors":"M. Barnes, G. Wait","doi":"10.1109/PPC.1995.599802","DOIUrl":null,"url":null,"abstract":"A pulse generator consisting of a coaxial cable and a high voltage modulator, incorporating two stacks of field-effect transistor (FET) switches operating in \"push-pull\" mode, has been designed and built. The modulator generates a continuous, unipolar, pulse train at a fundamental frequency of 1 MHz and a magnitude of 10 kV. The rise and fall times of the pulses are less than 39 ns. The two stacks each utilize 14 FETS, which are individually rated at 1 kV. The design incorporates a low-loss coaxial cable on which pulses are stored. Extensive PSpice simulations have been carried out to evaluate various design options. Subsequent measurements on the prototype pulse generator confirm the PSpice predictions.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":"28 1","pages":"1335-1340 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.599802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
A pulse generator consisting of a coaxial cable and a high voltage modulator, incorporating two stacks of field-effect transistor (FET) switches operating in "push-pull" mode, has been designed and built. The modulator generates a continuous, unipolar, pulse train at a fundamental frequency of 1 MHz and a magnitude of 10 kV. The rise and fall times of the pulses are less than 39 ns. The two stacks each utilize 14 FETS, which are individually rated at 1 kV. The design incorporates a low-loss coaxial cable on which pulses are stored. Extensive PSpice simulations have been carried out to evaluate various design options. Subsequent measurements on the prototype pulse generator confirm the PSpice predictions.