Near-infrared sensors for high efficiency and high-temperature operation enabled by ultra-thin type-II quantum wells and photon-trapping structures

Amita Rawat, Anthony M. Chiu, K. Choi, Patrick Oduor, A. Dutta, M. Islam
{"title":"Near-infrared sensors for high efficiency and high-temperature operation enabled by ultra-thin type-II quantum wells and photon-trapping structures","authors":"Amita Rawat, Anthony M. Chiu, K. Choi, Patrick Oduor, A. Dutta, M. Islam","doi":"10.1117/12.2637151","DOIUrl":null,"url":null,"abstract":"We present a multi-quantum well (MQW)-based photodetectors design method for a 1-3 μm wavelength selectivity range using the finite difference time domain (FDTD) Lumerical platform. We demonstrate absorption coefficient and power absorption profile modulation in an III-V-based type-II MQW stack embedded with photon-trapping (PT) surface structures. We present an MQW-based photodetectors design space by varying the MQW stacking period, and the well and the barrier dimensions from 100-200 and 5-10 nm respectively. We show that the power absorption in the MQW increases for a fixed wavelength sensitivity range. However, the well and the barrier dimension variation facilitate the wavelength sensitivity range modulation. The upper bound of 3 μm on the wavelength-selectivity is achieved by tuning the well/barrier widths. We further proposed a modified device structure to cap the lower wavelength optical signal and cap them at 1 μm. We also show a tremendous increase in power absorption by introducing photon-trapping holes into the MQW structure. Finally, we extract the effective absorption coefficient of the MQW using the power absorption profile generated in the FDTD framework to show the desired wavelength selectivity. Finally, we utilize the extracted absorption coefficient to perform a COMSOL-based simulation to show a 31% enhancement in quantum efficiency of the MQW detector with the introduction of photon-trapping holes.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"23 1","pages":"1220008 - 1220008-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2637151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a multi-quantum well (MQW)-based photodetectors design method for a 1-3 μm wavelength selectivity range using the finite difference time domain (FDTD) Lumerical platform. We demonstrate absorption coefficient and power absorption profile modulation in an III-V-based type-II MQW stack embedded with photon-trapping (PT) surface structures. We present an MQW-based photodetectors design space by varying the MQW stacking period, and the well and the barrier dimensions from 100-200 and 5-10 nm respectively. We show that the power absorption in the MQW increases for a fixed wavelength sensitivity range. However, the well and the barrier dimension variation facilitate the wavelength sensitivity range modulation. The upper bound of 3 μm on the wavelength-selectivity is achieved by tuning the well/barrier widths. We further proposed a modified device structure to cap the lower wavelength optical signal and cap them at 1 μm. We also show a tremendous increase in power absorption by introducing photon-trapping holes into the MQW structure. Finally, we extract the effective absorption coefficient of the MQW using the power absorption profile generated in the FDTD framework to show the desired wavelength selectivity. Finally, we utilize the extracted absorption coefficient to perform a COMSOL-based simulation to show a 31% enhancement in quantum efficiency of the MQW detector with the introduction of photon-trapping holes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超薄ii型量子阱和光子捕获结构实现了高效高温操作的近红外传感器
本文提出了一种基于多量子阱(MQW)的光电探测器设计方法,其波长选择范围为1-3 μm。我们展示了基于iii - v的嵌入光子捕获(PT)表面结构的ii型MQW堆栈的吸收系数和功率吸收剖面调制。我们提出了一种基于MQW的光电探测器设计空间,通过改变MQW的堆叠周期,阱和势垒尺寸分别为100-200 nm和5-10 nm。我们发现,在固定的波长灵敏度范围内,MQW的功率吸收增加。然而,阱和势垒尺寸的变化有利于波长灵敏度范围调制。波长选择性的上界为3 μm,可通过调节阱/势垒宽度实现。我们进一步提出了一种改进的器件结构,将较低波长的光信号封顶在1 μm。通过在MQW结构中引入光子捕获孔,我们还显示了功率吸收的巨大增加。最后,我们使用FDTD框架中生成的功率吸收曲线提取MQW的有效吸收系数,以显示所需的波长选择性。最后,我们利用提取的吸收系数进行了基于comsol的模拟,结果表明,引入光子捕获孔后,MQW探测器的量子效率提高了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré metalens-based fluorescence optical sectioning microscopy Novel high entropy alloy (AgAlCuNiTi) hybridized MoS2/Si nanowires heterostructure with plasmonic enhanced photocatalytic activity Structured surface plasmon generated with interfered evanescent waves Dielectric nanoantenna stickers for photoluminescence control A new optomechanical interaction and a model with non-trivial classical dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1