{"title":"The impact of refactoring changes on the SZZ algorithm: An empirical study","authors":"Edmilson Campos Neto, D. A. D. Costa, U. Kulesza","doi":"10.1109/SANER.2018.8330225","DOIUrl":null,"url":null,"abstract":"SZZ is a widely used algorithm in the software engineering community to identify changes that are likely to introduce bugs (i.e., bug-introducing changes). Despite its wide adoption, SZZ still has room for improvements. For example, current SZZ implementations may still flag refactoring changes as bug-introducing. Refactorings should be disregarded as bug-introducing because they do not change the system behaviour. In this paper, we empirically investigate how refactorings impact both the input (bug-fix changes) and the output (bug-introducing changes) of the SZZ algorithm. We analyse 31,518 issues of ten Apache projects with 20,298 bug-introducing changes. We use an existing tool that automatically detects refactorings in code changes. We observe that 6.5% of lines that are flagged as bug-introducing changes by SZZ are in fact refactoring changes. Regarding bug-fix changes, we observe that 19.9% of lines that are removed during a fix are related to refactorings and, therefore, their respective inducing changes are false positives. We then incorporate the refactoring-detection tool in our Refactoring Aware SZZ Implementation (RA-SZZ). Our results reveal that RA-SZZ reduces 20.8% of the lines that are flagged as bug-introducing changes compared to the state-of-the-art SZZ implementations. Finally, we perform a manual analysis to identify change patterns that are not captured by the refactoring identification tool used in our study. Our results reveal that 47.95% of the analyzed bug-introducing changes contain additional change patterns that RA-SZZ should not flag as bug-introducing.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"145 5 1","pages":"380-390"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67
Abstract
SZZ is a widely used algorithm in the software engineering community to identify changes that are likely to introduce bugs (i.e., bug-introducing changes). Despite its wide adoption, SZZ still has room for improvements. For example, current SZZ implementations may still flag refactoring changes as bug-introducing. Refactorings should be disregarded as bug-introducing because they do not change the system behaviour. In this paper, we empirically investigate how refactorings impact both the input (bug-fix changes) and the output (bug-introducing changes) of the SZZ algorithm. We analyse 31,518 issues of ten Apache projects with 20,298 bug-introducing changes. We use an existing tool that automatically detects refactorings in code changes. We observe that 6.5% of lines that are flagged as bug-introducing changes by SZZ are in fact refactoring changes. Regarding bug-fix changes, we observe that 19.9% of lines that are removed during a fix are related to refactorings and, therefore, their respective inducing changes are false positives. We then incorporate the refactoring-detection tool in our Refactoring Aware SZZ Implementation (RA-SZZ). Our results reveal that RA-SZZ reduces 20.8% of the lines that are flagged as bug-introducing changes compared to the state-of-the-art SZZ implementations. Finally, we perform a manual analysis to identify change patterns that are not captured by the refactoring identification tool used in our study. Our results reveal that 47.95% of the analyzed bug-introducing changes contain additional change patterns that RA-SZZ should not flag as bug-introducing.