M. Jahn, R. Feger, C. Pfeffer, T. Meister, A. Stelzer
{"title":"A sige-based 140-GHz four-channel radar sensor with digital beamforming capability","authors":"M. Jahn, R. Feger, C. Pfeffer, T. Meister, A. Stelzer","doi":"10.1109/MWSYM.2012.6259482","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-channel radar sensor operating at 140 GHz. The sensor employs fundamental-wave SiGe-based chips that feature HBTs with 340-GHz ƒmax. A separate voltage-controlled oscillator chip provides the LO signal with frequencies from 136 to 150GHz for four cascaded transceiver chips. The saturated transceiver output power is approximately 4 dBm, the maximum receiver gain is 19.5 dB, and the minimum double-sideband noise figure is 13.5 dB. The equivalent isotropically radiated power of a single channel is 5 dBm. The sensor was field-tested with frequency-modulated continuous-wave chirps from 140 to 145 GHz. Targets were resolved in range and angle by means of digital beamforming.","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6259482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a multi-channel radar sensor operating at 140 GHz. The sensor employs fundamental-wave SiGe-based chips that feature HBTs with 340-GHz ƒmax. A separate voltage-controlled oscillator chip provides the LO signal with frequencies from 136 to 150GHz for four cascaded transceiver chips. The saturated transceiver output power is approximately 4 dBm, the maximum receiver gain is 19.5 dB, and the minimum double-sideband noise figure is 13.5 dB. The equivalent isotropically radiated power of a single channel is 5 dBm. The sensor was field-tested with frequency-modulated continuous-wave chirps from 140 to 145 GHz. Targets were resolved in range and angle by means of digital beamforming.