{"title":"Ferrofluid magnetoviscous control of wall flow channeling in porous media","authors":"Faïçal Larachi, Damien Desvigne","doi":"10.1016/j.cpart.2006.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind. After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.</p></div>","PeriodicalId":100239,"journal":{"name":"China Particuology","volume":"5 1","pages":"Pages 50-60"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cpart.2006.12.001","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Particuology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672251507000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind. After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.