Recommending Unanimously Preferred Items to Groups

Karim Benouaret, K. Tan
{"title":"Recommending Unanimously Preferred Items to Groups","authors":"Karim Benouaret, K. Tan","doi":"10.48786/edbt.2023.29","DOIUrl":null,"url":null,"abstract":"Due to the pervasiveness of group activities in people’s daily life, group recommendation has attracted a massive research effort in both industry and academia. A fundamental challenge in group recommendation is how to aggregate the preferences of group members to select a set of items maximizing the overall satisfaction of the group; this is the focus of this paper. Specifically, we introduce a dual adjustment aggregation score, which measures the relevance of an item to a group. We then propose a recommendation scheme, termed 𝑘 -dual adjustment unanimous skyline, that seeks to retrieve the 𝑘 items with the highest score, while discarding items that are unanimously considered inap-propriate. Furthermore, we design and develop algorithms for computing the 𝑘 -dual adjustment unanimous skyline efficiently. Finally, we demonstrate both the retrieval effectiveness and the efficiency of our approach through an extensive experimental evaluation on real datasets.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"116 1","pages":"364-377"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the pervasiveness of group activities in people’s daily life, group recommendation has attracted a massive research effort in both industry and academia. A fundamental challenge in group recommendation is how to aggregate the preferences of group members to select a set of items maximizing the overall satisfaction of the group; this is the focus of this paper. Specifically, we introduce a dual adjustment aggregation score, which measures the relevance of an item to a group. We then propose a recommendation scheme, termed 𝑘 -dual adjustment unanimous skyline, that seeks to retrieve the 𝑘 items with the highest score, while discarding items that are unanimously considered inap-propriate. Furthermore, we design and develop algorithms for computing the 𝑘 -dual adjustment unanimous skyline efficiently. Finally, we demonstrate both the retrieval effectiveness and the efficiency of our approach through an extensive experimental evaluation on real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向组推荐一致首选项目
由于群体活动在人们日常生活中的普遍存在,群体推荐在业界和学术界都引起了大量的研究。群体推荐的一个基本问题是如何综合群体成员的偏好来选择一组项目,使群体整体满意度最大化;这是本文的重点。具体来说,我们引入了一个双调整聚合分数,它测量了一个项目与一个组的相关性。然后,我们提出了一个推荐方案,称为𝑘-双重调整一致的天际线,它寻求检索得分最高的𝑘项,同时丢弃一致认为不合适的项。此外,我们设计并开发了有效计算𝑘-对偶平差一致天际线的算法。最后,我们通过对真实数据集的广泛实验评估来证明我们的方法的检索有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1