Topology Optimization Design for Heat Dissipation Performance of Semiconductor Ignition Device

IF 1.6 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Thermal Science and Engineering Applications Pub Date : 2023-06-26 DOI:10.1115/1.4062733
Jia Chen, Xiaobing Zhang, Ruijie Zhu
{"title":"Topology Optimization Design for Heat Dissipation Performance of Semiconductor Ignition Device","authors":"Jia Chen, Xiaobing Zhang, Ruijie Zhu","doi":"10.1115/1.4062733","DOIUrl":null,"url":null,"abstract":"\n The trend of miniaturization and intgration of the electronic device has put forward higher requirements on efficiency of heat radiating, which can hardly be satisfied by the traditional forced convection heat dissipation method. In this paper, the strategy of topology optimization technique is adopted to greatly improve the heat dissipation efficiency of a semiconductor ignition device. The penalization method is used to implement the topology optimization process. Three kinds of objective functions of thermal compliance, temperature variance and geometric average temperature were separately applied in the topological optimization of two typical uniform heat generation cases, and the resulted topologically optimization results were analyzed and compared. Based on the two benchmark cases, the appropriate objective function was selected to conduct structural optimization of semiconductor bridge ignition devices with the aim of making the highest temperature in the design domain the lowest possible. Additionally, a parametric study on the effect of thermal conductivity on topology optimization results was conducted, which leads to a design suggestion beneficial for heat dissipation and material selection.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"35 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062733","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The trend of miniaturization and intgration of the electronic device has put forward higher requirements on efficiency of heat radiating, which can hardly be satisfied by the traditional forced convection heat dissipation method. In this paper, the strategy of topology optimization technique is adopted to greatly improve the heat dissipation efficiency of a semiconductor ignition device. The penalization method is used to implement the topology optimization process. Three kinds of objective functions of thermal compliance, temperature variance and geometric average temperature were separately applied in the topological optimization of two typical uniform heat generation cases, and the resulted topologically optimization results were analyzed and compared. Based on the two benchmark cases, the appropriate objective function was selected to conduct structural optimization of semiconductor bridge ignition devices with the aim of making the highest temperature in the design domain the lowest possible. Additionally, a parametric study on the effect of thermal conductivity on topology optimization results was conducted, which leads to a design suggestion beneficial for heat dissipation and material selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半导体点火装置散热性能的拓扑优化设计
电子器件的小型化、集成化趋势对散热效率提出了更高的要求,传统的强制对流散热方式已难以满足这一要求。本文采用拓扑优化技术的策略,大大提高了半导体点火装置的散热效率。采用惩罚方法实现拓扑优化过程。将热柔度、温度方差和几何平均温度三种目标函数分别应用于两种典型均匀产热情况的拓扑优化,并对拓扑优化结果进行了分析比较。基于这两种基准情况,选择合适的目标函数对半导体桥式点火装置进行结构优化,使设计域内的最高温度尽可能低。此外,还对导热系数对拓扑优化结果的影响进行了参数化研究,得出了有利于散热和材料选择的设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Thermal Science and Engineering Applications
Journal of Thermal Science and Engineering Applications THERMODYNAMICSENGINEERING, MECHANICAL -ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
9.50%
发文量
120
期刊介绍: Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems
期刊最新文献
Improving turbine endwall overall cooling effectiveness using curtain cooling and redistributed film-hole layouts: an experimental and computational study Soft Computing Model for Inverse Prediction of Surface Heat Flux from Temperature Responses in Short-Duration Heat Transfer Experiments Aerothermal Optimization of Film Cooling Hole Locations on the Squealer Tip of an HP Turbine Blade Theoretical investigation of low global warming potential blends replacing R404A: the simple refrigeration cycle and its modifications Study on the Influence of Fan and Fan Cowl on Intake Air Parameters of Cooling Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1