{"title":"Effect of Static Loading States on the Compressional Behavior of Foam Glass Aggregate","authors":"W. Mustafa, J. Szendefy","doi":"10.3311/ppci.21973","DOIUrl":null,"url":null,"abstract":"In this study, two groups of foam glass aggregate (FGA) samples were prepared with four different compaction ratios (10%, 20%, 30%, and 40%) and subjected to a series of static compressional loads from 50kPa to 300kPa with 50kPa interval. In first group of the test (changed load samples, ChLS), for each static load value, a new sample was prepared and tested. In the other group of the test (continuously loaded samples, CLS), all prescribed static compressional loads were sequentially applied over the same sample after satisfying the required strain rate at each load. The results revealed that the overall vertical strain values of CLS were lower than ChLS except for 10%, which shows reverse behavior. For both sample types, the required time to reach the desired vertical strain rate was much higher when the compaction ratio was low, and the compressional load was above 250 kPa. The compaction methodology used in the present study led to more reliable vertical strain values for both short- and long-term loading periods compared to other reported results executed on FGA under the same static compressional load circumstances. The evolution in the particle distribution curve of FGA particles after maximum compaction ratio (40%) was nonsignificant compared to the study works that depended on traditional standard test methods of compaction and led to severe change in particles structural component. The current findings beneficially affect civil engineering applications using FGA by defining the material's final strain values when subjected to static compressional loads at different compaction ratios.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, two groups of foam glass aggregate (FGA) samples were prepared with four different compaction ratios (10%, 20%, 30%, and 40%) and subjected to a series of static compressional loads from 50kPa to 300kPa with 50kPa interval. In first group of the test (changed load samples, ChLS), for each static load value, a new sample was prepared and tested. In the other group of the test (continuously loaded samples, CLS), all prescribed static compressional loads were sequentially applied over the same sample after satisfying the required strain rate at each load. The results revealed that the overall vertical strain values of CLS were lower than ChLS except for 10%, which shows reverse behavior. For both sample types, the required time to reach the desired vertical strain rate was much higher when the compaction ratio was low, and the compressional load was above 250 kPa. The compaction methodology used in the present study led to more reliable vertical strain values for both short- and long-term loading periods compared to other reported results executed on FGA under the same static compressional load circumstances. The evolution in the particle distribution curve of FGA particles after maximum compaction ratio (40%) was nonsignificant compared to the study works that depended on traditional standard test methods of compaction and led to severe change in particles structural component. The current findings beneficially affect civil engineering applications using FGA by defining the material's final strain values when subjected to static compressional loads at different compaction ratios.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.