The zlog value as a basis for the standardization of laboratory results

IF 0.1 Q4 OTORHINOLARYNGOLOGY Laboratoriumsmedizin-Journal of Laboratory Medicine Pub Date : 2017-01-01 DOI:10.1515/labmed-2017-0135
Georg F. Hoffmann, F. Klawonn, R. Lichtinghagen, M. Orth
{"title":"The zlog value as a basis for the standardization of laboratory results","authors":"Georg F. Hoffmann, F. Klawonn, R. Lichtinghagen, M. Orth","doi":"10.1515/labmed-2017-0135","DOIUrl":null,"url":null,"abstract":"Abstract Background: With regard to the German E-Health Law of 2016, the German Society for Clinical Chemistry and Laboratory Medicine (DGKL) has been invited to develop a standard procedure for the storage and transmission of laboratory results. We suggest the commonly used z-transformation. Methods: This method evaluates by how many standard deviations (SDs) a given result deviates from the mean of the respective reference population. We confirm with real data that laboratory results of healthy individuals can be adjusted to a normal distribution by logarithmic transformation. Results: Thus, knowing the lower and upper reference limits LL and UL, one can transform any result x into a zlog value using the following equation: zlog=(log(x)–(log(LL)+log(UL))/2)·3.92/(log(UL)– log(LL)) $\\eqalign{ {\\rm{zlog}} = & {\\rm{(log(x)}}-{\\rm{(log(LL)}} + {\\rm{log(UL))/2)\\cdot3}}{\\rm{.92/(log(UL)}} \\cr -{\\bf{ }}{\\rm{log(LL))}} \\cr} $ The result can easily be interpreted, as its reference interval (RI) is –1.96 to +1.96 by default, and very low or high results yield zlog values around –5 and +5, respectively. For intuitive data presentation, the zlog values may be transformed into a continuous color scale, e.g. from blue via white to orange. Using the inverse function, any zlog value can then be translated into the theoretical result of an analytical method with another RI: (1) x=LL0.5−zlog/3.92⋅UL0.5+zlog/3.92 $${\\rm{x}} = {\\rm{L}}{{\\rm{L}}^{0.5 - {\\rm{zlog}}/3.92}} \\cdot {\\rm{U}}{{\\rm{L}}^{0.5 + {\\rm{zlog}}/3.92}}$$ Conclusions: Our standardization proposal can easily be put into practice and may effectively contribute to data quality and patient safety in the frame of the German E-health law. We suggest for the future that laboratories should provide the zlog value in addition to the original result, and that the data transmission protocols (e.g. HL7, LDT) should contain a special field for this additional value.","PeriodicalId":49926,"journal":{"name":"Laboratoriumsmedizin-Journal of Laboratory Medicine","volume":"16 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratoriumsmedizin-Journal of Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/labmed-2017-0135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Background: With regard to the German E-Health Law of 2016, the German Society for Clinical Chemistry and Laboratory Medicine (DGKL) has been invited to develop a standard procedure for the storage and transmission of laboratory results. We suggest the commonly used z-transformation. Methods: This method evaluates by how many standard deviations (SDs) a given result deviates from the mean of the respective reference population. We confirm with real data that laboratory results of healthy individuals can be adjusted to a normal distribution by logarithmic transformation. Results: Thus, knowing the lower and upper reference limits LL and UL, one can transform any result x into a zlog value using the following equation: zlog=(log(x)–(log(LL)+log(UL))/2)·3.92/(log(UL)– log(LL)) $\eqalign{ {\rm{zlog}} = & {\rm{(log(x)}}-{\rm{(log(LL)}} + {\rm{log(UL))/2)\cdot3}}{\rm{.92/(log(UL)}} \cr -{\bf{ }}{\rm{log(LL))}} \cr} $ The result can easily be interpreted, as its reference interval (RI) is –1.96 to +1.96 by default, and very low or high results yield zlog values around –5 and +5, respectively. For intuitive data presentation, the zlog values may be transformed into a continuous color scale, e.g. from blue via white to orange. Using the inverse function, any zlog value can then be translated into the theoretical result of an analytical method with another RI: (1) x=LL0.5−zlog/3.92⋅UL0.5+zlog/3.92 $${\rm{x}} = {\rm{L}}{{\rm{L}}^{0.5 - {\rm{zlog}}/3.92}} \cdot {\rm{U}}{{\rm{L}}^{0.5 + {\rm{zlog}}/3.92}}$$ Conclusions: Our standardization proposal can easily be put into practice and may effectively contribute to data quality and patient safety in the frame of the German E-health law. We suggest for the future that laboratories should provide the zlog value in addition to the original result, and that the data transmission protocols (e.g. HL7, LDT) should contain a special field for this additional value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将zlog值作为实验室结果标准化的依据
背景:根据2016年德国电子卫生法,德国临床化学和检验医学学会(DGKL)被邀请制定实验室结果存储和传输的标准程序。我们建议使用常用的z变换。方法:该方法通过给定结果与相应参考总体的平均值偏离多少个标准差(sd)来评估。我们用实际数据证实,健康个体的实验室结果可以通过对数变换调整为正态分布。结果:因此,知道参考下限LL和UL,可以使用以下公式将任何结果x转换为zlog值:zlog=(log(x) - (log(LL)+log(UL))/2)·3.92/(log(UL) - log(LL)) $\eqalign{ {\rm{zlog}} = & {\rm{(log(x)}}-{\rm{(log(LL)}} + {\rm{log(UL))/2)\cdot3}}{\rm{.92/(log(UL)}} \cr -{\bf{ }}{\rm{log(LL))}} \cr} $结果很容易解释,因为它的参考区间(RI)默认为- 1.96到+1.96,非常低或高的结果产生的zlog值分别在- 5和+5左右。为了直观地表示数据,zlog值可以转换为连续的色阶,例如,从蓝色到白色到橙色。利用反函数,任何zlog值都可以转化为另一个RI分析方法的理论结果:(1)x=LL0.5−zlog/3.92⋅UL0.5+zlog/3.92 $${\rm{x}} = {\rm{L}}{{\rm{L}}^{0.5 - {\rm{zlog}}/3.92}} \cdot {\rm{U}}{{\rm{L}}^{0.5 + {\rm{zlog}}/3.92}}$$结论:我们的标准化建议可以很容易地付诸实践,并可以有效地促进德国电子卫生法框架下的数据质量和患者安全。我们建议未来实验室在原始结果之外提供zlog值,并且数据传输协议(例如HL7, LDT)应该包含这个附加值的特殊字段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: Information not localized
期刊最新文献
A new approach to the interpretation of B-type natriuretic peptide concentration in children with congenital heart disease Digital competence in laboratory medicine German Congress of Laboratory Medicine: 17th Annual Congress of the DGKL and 4th Symposium of the Biomedical Analytics of the DVTA e. V Frontmatter XVth International Congress on Pediatric Laboratory Medicine, Munich, Nov 27–28, 2021; Poster Presentation Abstracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1