Jonathan Jakob, André Artelt, M. Hasenjäger, Barbara Hammer
{"title":"SAM-kNN Regressor for Online Learning in Water Distribution Networks","authors":"Jonathan Jakob, André Artelt, M. Hasenjäger, Barbara Hammer","doi":"10.48550/arXiv.2204.01436","DOIUrl":null,"url":null,"abstract":". Water distribution networks are a key component of modern infrastructure for housing and industry. They transport and distribute water via widely branched networks from sources to consumers. In order to guarantee a working network at all times, the water supply company continuously monitors the network and takes actions when necessary – e.g. reacting to leakages, sensor faults and drops in water quality. Since real world networks are too large and complex to be monitored by a human, algorithmic monitoring systems have been developed. A popular type of such systems are residual based anomaly detection systems that can detect events such as leakages and sensor faults. For a continuous high quality monitoring, it is necessary for these systems to adapt to changed demands and presence of various anomalies. In this work, we propose an adaption of the incremental SAM-kNN classifier for regression to build a residual based anomaly detection system for water distribution networks that is able to adapt to any kind of change.","PeriodicalId":93416,"journal":{"name":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","volume":"91 6 1","pages":"752-762"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial neural networks, ICANN : international conference ... proceedings. International Conference on Artificial Neural Networks (European Neural Network Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.01436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
. Water distribution networks are a key component of modern infrastructure for housing and industry. They transport and distribute water via widely branched networks from sources to consumers. In order to guarantee a working network at all times, the water supply company continuously monitors the network and takes actions when necessary – e.g. reacting to leakages, sensor faults and drops in water quality. Since real world networks are too large and complex to be monitored by a human, algorithmic monitoring systems have been developed. A popular type of such systems are residual based anomaly detection systems that can detect events such as leakages and sensor faults. For a continuous high quality monitoring, it is necessary for these systems to adapt to changed demands and presence of various anomalies. In this work, we propose an adaption of the incremental SAM-kNN classifier for regression to build a residual based anomaly detection system for water distribution networks that is able to adapt to any kind of change.